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1 Introduction

Isotope Shift is called the change in the energy levels of electrons in atoms or molecules that
occurs for different isotopes. For lightweight atoms the change in the energy levels of the
electrons is mainly caused by the different masses of the nuclei of different isotopes (mass
effect). For heavier atoms the charge distribution in the nucleus changes for different num-
bers of neutrons, and this in turn changes the energy levels of the electrons (volume effect).
In addition, different isotopes usually have different nuclear spins. This also contributes to a
change in the electron energy levels.
The energy shift between the Hydrogen and the Deuterium isotope can be explained with the
mass effect. The change in wavelength of the corresponding spectrallines is 1–2 Å, which
is large enough to be detected with a medium resolution spectrometer.

2 The Hydrogen Atom

2.1 Bohr–Sommerfeld Model

The basic characteristics of the Hydrogen spectrum can be explained with the Bohr model
[1]. For the energy levelsEn one finds:

En = −R∞/n
2, (1)

with n = 1,2,3, . . . and the Rydberg constantR∞ = 13.605 eV. In Bohr’s model of the atom,
the isotopic shift caused by a change in the mass of the atomicnucleus can be explained as
follows: The Rydberg constantR∞ is determined for a static atomic nucleus (i.e. with an
infinite mass), which is then proportional to the electron massme. A more realistic approach
models the atom as a classical two-body problem, in which both the nucleus and the electron
are moving. In the solution of the two-body problem,me is substituted by the reduced mass
µ given by:

µ =
me ·mk

me+mk
, (2)

with mk the mass of the nucleus.
In Bohr’s model of the atom, electron states with zero orbitalangular momentum do not exist.
This problem is solved by a description of the atom using the Schroedinger equation [2]. In
the Schroedinger equation, however, the spin of the electron is still not taken into considera-
tion. This is done by the Dirac equation that describes fine-structure and relativistic effects.
The solution of the Dirac equation still needs to be corrected for quantum-electrodynamical
effects in order to be able to explain the Lamb-shift.

2.2 Schroedinger equation for the Hydrogen atom

The Hamiltonian including only the Coulomb interaction is given by:

Ĥ =
1

2mk
P̂2

k +
1

2me
P̂2

e −
e2

|Rk −Re|
, (3)

whereP̂ andR̂ are the operators of the momentum and the position, respectively. The first
two terms give the kinetic energy of the nucleus and the electron, and the last term describes
their Coulomb interaction.



Figure 1: Energy levels and series of spectra for Hydrogen according to the Bohr model.

The solution of the Schroedinger equation

Ĥ|Ψ〉 = E|Ψ〉 (4)

gives the eigenvectors|Ψ〉 und energy eigenvaluesE of the atom. The equation can be sim-
plified by introducing coordinates relative to the center ofgravity of the atom.
Ĥ is then written as:

Ĥ =
1

2(me+mk)
P̂2

s +
1
2µ

P̂2
ke−

e2

Rke
, (5)

with P̂s and P̂ke, respectively, the momentum operator of the nucleus and theelectron in
the new coordinate system, andRke the absolute value of the position operator. Because of
Ĥ = Ĥs+ Ĥke, |Ψ〉 can be split in two dynamically independent parts:

|Ψ〉 = |Ψs〉|Ψke〉. (6)

To determine the isotopic shift, only|Ψke〉 is of interest, which describes a particle with mass
µ in a central potential field ofe2/r.
Since this a problem of spherical symmetry, the angular momentum is a constant of motion.
The state vectors that are a solution of the Schroedinger equation are then characterized by
the quantum numbersE, l andml:

|Ψ〉ke = |E, l,ml〉. (7)



The eigenvalues of the operatorsĤ, L̂2 andL̂z areE, n, l(l+1) undml [2].
The solution of the Schroedinger equation can be obtained inthe following steps:
(The indexke will be omitted from here on)

• Using the position representation, the equation is changedfrom an operator equation
into a differential equation. Because of the sperical symmetry of the potential term,
spherical position coordinates are used.

〈r|Ĥ−E|E, l,ml〉 =

(

−
h̄2

2µ
∆−

e2

r
−E

)

〈r|E, l,ml〉 (8)

with

∆ =
∂2

∂r2
+

2
r
∂

∂r
+

1

r2

[

1
sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

sin2θ

∂2

∂θ2

]

. (9)

• The part of the Laplace operator∆ that depends onθ andφ is equal to the operator
1
h̄2 L̂2 in the position representation. The effect of 1

h̄2 L̂2 on E, l, ml is known, and it is
used to rewrite eq. (8) as:

(

−
h̄2

2µ
∆−

e2

r

)

〈r|E, l,ml〉 =

[

−
h̄2

2µ

(

∂2

∂r2
+

2
r
∂

∂r

)

h̄2l(l+1)

2µr2
−

e2

r
−E

]

〈r|E, l,ml〉. (10)

From eq. (10) it can be seen that the wave function〈r|E, l,ml〉 can be separated in
two parts, one part depending only on the radiusr, and the other only on the angular
coordinates.

〈r|E, l,ml〉 = R(r) ·χ(θ,φ) (11)

• The solution of the equation for the radius gives the radial part of the wave function
and the possible energy eigenvalues. For states with energy(E < 0):

En = −
RH

n2
, with n = 1,2,3, . . . (≡ principal quantum number) (12)

These energy eigenvalues are degenerate (which means that there is more than one wave
function for the same energy eigenvalue). For example, all wave functions for a certain
quantum numbern have the same eigenvalueEn for all quantum numbersl, with l+1 ≤ n
(l-degeneracy). In addition, the problem is rotation invariant, which causes aml-degeneracy
(degeneracy of 2l+1). As a consequence, every energy eigenvalueEn has

∑n−1
l=0 2l+1= n2

different wave functions.
In spectroscopy it is common practice to label states with the principal quantum numbern
and with an alphabetic character that comprises the angularmomentum quantum numberl.
The following symbols are used:

l = 0,1,2,3,4,5, . . .

s, p,d, f ,g,h, . . . etc. inalphabeticorder (13)



2.3 Probability density of the electron position

In the quantum mechanical description of the Hydrogen atom,the electrons do not circle in
defined orbits anymore. There is a probability density for the electrons around the nucleus.
This density has a characteristic form for every wave function. The probability to find an
electron in a certain element of spaced3r at positionr is given by [2]:

|〈~r|En, l,ml〉|
2d3r (14)

Because according to eq. (10) the wave function can be separated into a radial part and an
angular part, also the probability density can be separatedin these two parts.

Figure 2: Radial part of the wave function for the three lowestenergy levels

From the graph of the radial part of the wave functionRn,l(r) in Fig. 2 (the function only
depends on the quantum numbersn und l), it is clear that the expressionRn,0(r)R∗n,0(r) does
not vanish forr approaching zero. This suggests that there is a non-zero probability that the
position of thes-electrons is inside the nucleus. If the probability for theelectron to be found
in a spherical shell with radiusr betweenr andr+ dr is calculated fromRn,l(r)R∗n,l(r)r2dr,
the result is as shown in Fig.3.

2.4 Angular part of the wave function

The angular parts of the wavefunctions of Hydrogen are givenby the spherical harmonic
functionsYl,m(θ,φ). The probability densityYl,mY∗l,mdφ is with Yl,m ∝ exp(imφ) independent
of the azimuthal angleφ, i.e. it is rotational symmetric around thez-axis.
Its dependence onθ, which gives the probability to find the electron in a spherical shell with
its half opening angle betweenθ andθ+dθ, is given byYl,mY∗l,m sinθdθ, shown in Fig.4 and
Fig. 5.
A graph that combines the angular and the radial dependence to a 3D plot of the probability
density is shown in Fig.6 and Fig.7. In these figures, the brightness of the "cloud" gives the
probability to find the electron at that position. A brightercloud means a higher probability.



Figure 3: Radial position probability density for the electron in the three lowest energy levels

Figure 4: Angular part of the wave function of the electron inthe p-state (l = 1).
(Source: http://www.tf.uni-kiel.de/matwis/amat/mw1_ge/kap_2/backbone/r2_1_4.html)

2.5 Corrections

The degeneracy of the Hydrogen energy eigenstates is removed when, in addition to rela-
tivistic effects and corrections originating from quantum electrodynamics, the interactions
between electron spin, nuclear spin, and angular momentum are taken into consideration.
That means that the following corrections (given in order ofsize) must be added to the solu-
tion of the Schroedinger equation (see Section2.2):

1. Interaction between the magnetic moment caused by the electron spin and the magnetic
moment caused by the electron orbit (spin-orbit coupling)

2. Relativistic change of the electron mass and corrections due to the uncertainty of the
electron orbit, which causes a deviation of the 1/r potential.

Effects 1 and 2 are the origin of the so-called "fine-structure".



Figure 5: Angular part of the wave function of the electron inthed-state (l = 2).
(Source: http://www.tf.uni-kiel.de/matwis/amat/mw1_ge/kap_2/backbone/r2_1_4.html)

3. Interaction between the magnetic moment of the nuclear spin and the total magnetic
moment of electron spin and electron orbit. This effect causes the "hyperfine-structure".

4. Small corrections originating from quantum electrodynamics due to vacuum polarisa-
tion and zero point fluctuations of the radiation. These effects cause the "Lamb-shift".

For further study of the effects mentioned in points 3 and 4, one is referred to [2]. Concerning
the fine structure it can be shown that the correction for the relativistic changes of the mass
removes thel-degeneracy.
The spin-orbit coupling can be understood starting from classical considerations, see also
[2]. After removing thel-degeneracy by implementing the relativistic corrections, the energy
eigenvalues are given byEn,l. These energy values need to be corrected for the energy thatis
connected with the orientation of the magnetic moment related to the spin of the electron in
the magnetic field that is generated at the position of the electron by the orbit of the electron.
Classically this energy is given by:

∆E =
1

2m2c2

e2

r3
(~L · ~S ), (15)

wherer is the radius of the electron orbit ,~L is angular momentum of the electron orbit,
and~S is the spin vector of the electron. From eq. (15) it is clear that the energy correction
depends on the relative orientation of~L and~S .



Figure 6: 3D graph of the electronic wave function for the 2p-states (n= 2, l= 1, left column),
the 3p-states (n = 3, l = 1, center column), and the 3d-states (n = 3, l = 2, right column). The
corresponding magnetic quantum numbers arem = 0 (upper row),m = 1 (center row), and
m = 2 (lower row).
(Source: http://abulafia.mt.ic.ac.uk/Bulatov/gallery/qmech/hydr/index.html)

To translate this energy correction to quantum mechanics, the correspondence principle is
used in eq. (15). This leads to an additional term in the Hamilton operator,ĤSpin−Bahn, being:

ĤSpin−Bahn=
1

2m2c2

e2

r3
L̂ · Ŝ (16)

(L̂: operator of the angular momentum,Ŝ : spin operator).



Figure 7: 3D graph of the electronic wave function for the 4p-states (n= 4, l= 1, left column),
the 4d-states (n = 4, l = 2, center column), and the 4f -states (n = 4, l = 3, right column). The
corresponding magnetic quantum numbers arem = 0 (upper row),m = 1 (second row),m = 2
(third row), andm = 3 (lower row).
(Source: http://abulafia.mt.ic.ac.uk/Bulatov/gallery/qmech/hydr/index.html)



Figure 8: Fine-structure of the three lowest energy levels of atomic Hydrogen.

The contribution of this term of the Hamilton operator is generally being calculated with the
perturbation method. The result of this calculation is shown in Fig.8.

All states withl, 0 are spilt into doublets that correspond to a "parallel" and an "anti-parallel"
orientation of orbital angluar momentum and spin. The spectroscopical notation for states
that belong to the principal quantum numbern with ~L and ~S coupled to a total angular
momentum~J is:

n2s+1L j z.B. 42F7/2. (17)

s,L, j are the quantum numbers of the spin and both angular momentums. For the notation
of L see eq. (13).

If the relativistic correction of the energy and the spin-orbit correction are both applied, it
appears that the energy of states with the samej is identical (see Fig.8). This means that
now there is aj-degeneracy that is removed again by applying the "Lamb-shift" correction.



3 Selection Rules, Line Width

The position of the energy levels of the electrons is determined experimentally by analysis of
the spectrum of the electromagnetic radiation emitted due to electronic transistions between
the energy levels. The allowed transitions are given by the selection rules, which are deter-
mined from the conservation laws to which the transitions need to comply.
(i: initial state of the atom,f : final state of the atom):

1. Energy conservation law
Ei = E f + hν (ν: frequency of the radiation)

2. Conservation of angular momentum
~Ji = ~J f + ~JRadiation

or
| ~Ji− ~J f | ≤ ~JRadiation≤ | ~Ji+ ~J f |

3. Parity conservation
(Parity)i = (Parity)f · (Parity)radiation

The parity gives the symmetry of the wave function when it is mirrored with respect
to the origin of the coordinate system:

pos. (+) Parity↔ no sign change

neg. (−) Parity↔ sign change

Wave functions that are physically meaningful have a parity(with exception of wave
functions, where the weak interaction plays a role (e.g.β-decay))

The momentum as a property of the electromagnetic radiationhas a relation to its multipo-
larity 2l. l indicates the angular momentum (e.g. 21 dipole radiation – angular momentum
1, 22 quadrupol radiation – angular momentum 2). The parity of theradiation is determined
by its angular momentum and its character (either electronic (E) radiation or magnetic (M)
radiation):

For E–radiation: Parity (−1)l

For M–radiation: Parity (−1)l+1

If there is more than one possible radiation type in the transition between two energy levels,
the different radiation types are observed according to their transition probability. About
the transition probability one can say (qualitatively): "The transition probability decreases
with increasing multipolarity. At the same level of multipolarity, the transition probability is
smaller for M–radiation than for E–radiation."
It follows that E–dipole radiation has the highest probability. For this radiation the selection
rules are:

∆J = 0,±1, but not 0→ 0 (18)

∆l = ±1, (19)

∆m j = 0,±1. (20)

Transitions that are only possible via other radiation types than E–dipole radiation are la-
belled as forbidden, because they have a much smaller transition probability than the E–
dipole radiation.



3.1 Line width

In an experimental setup one will not be able to observe "sharp"(delta function like) wave-
length or frequency signals, even using an instrument (spectrometer) with an extremely high
resolution. One always observes a distribution of wavelengths or frequencies. The reasons
for this observation are the different physical mechanisms that lead to broadening of the lines,
i.e. natural line width, Doppler broadening, pressure broadening.
If one could observe the spectrum of spontaneous emission ofatoms that do not move and
that have no interaction with other atoms, the line width of the observed lines would be the
natural line width. The natural line width is related to the life time (= 1/transition probability)
of the atomic state via a Fourier transformation. Approximately:

Γ ·τ ∼ h̄ (Γ : nat. line width, τ : life time) (21)

The natural line width for transitions with wavelengths in the visible spectrum that have a
life time of around 10−8 s is approximately 10−4 Å. Consequently, at room temperature, it
is much smaller than the Doppler broadening. A convolution of the Doppler shift with the
thermal velocity distribution gives for the line width:

δνD =
2ν0
c

√

2RT ln2
M

= 7.16×10−6ν0

√

T
M

(22)

(ν0: atomic frequency,M: atomic mass,T : temperature [K],R: gas constant)
At room temperature the line width of a Doppler-broadened line of Hydrogen in the visible
spectrum is approximately 0.6 Å.

4 Isotope Shift

There are two main causes for the isotope shift, the volume effect and the mass effect. The
volume effect dominates the mass effect for heavy atoms. The larger nucleus expands, which
changes the 1/r potential field. For isotopes this expansion depends, with aconstant number
of protons in the nucleus, on the different number of neutrons in the nucleus, which changes
the charge density in the nucleus and the potential field accordingly. This effect will be
the strongest for thes-electrons. The mass effect will dominate for the lighter atoms and
their isotopes. For low-mass nuclei the effect of a different number of neutrons has a large
influence on the reduced mass in the Hamilton operator. The mass effect explains the isotope
shift of Hydrogen/Deuterium quite well. Because this shift is quite large, approximately 1 Å,
it can be observed also in the case of Doppler-broadened lines.
An estimate of the isotope shift can be obtained from:
(RH undRD are the Rydberg constants for Hydrogen and Deuterium, respectively)

RD

RH
=

1+ me
mH

1+ me
mD

≈

(

1+
me

mH

)(

1−
me

mD

)

, (23)

or with mD ≈ 2mH and me
mH
≈ 1

1836:

RD

RH
≈ 1+

me

2mH
= 1+

1
2 ·1836

(24)



and

νD = RD

(

1

n2
−

1

n2

)

= RH

(

1+
me

2mH

)(

1

n2
−

1

n2

)

(25)

= νH

(

1+
1

2 ·1836

)

(26)

or

λD = λH

(

1−
1

2 ·1836

)

(27)

and

∆λ = λH −λD = λH
1

2 ·1836
. (28)

It is clear that the Deuterium lines are shifted to shorter wavelengths. The magnitude of the
shift is proportional to the wavelength.

5 Instrumentation

5.1 The Grating Spectrometer

To observe the isotopic shift between Hydrogen and Deuterium, a resolution ofλ/∆λ ≥ 104

is necessary. This resolution can be realized with a good grating spectrometer, that is usually
equipped with a reflection grating. For a flat grating with grating constant (grating parameter)
a it holds for the intensity maximum of ordern that:

nλ = a(sinα−sinβ). (29)

From this equation one obtains, for a constant angle of incidenceα, for the angular disper-
sion:

dβ
dλ
= −

n
acosβ

= −
sinα−sinβ
λcosβ

. (30)

The optical path through the spectrometer is shown in Fig.9. Fig.10shows a photograph of
the grating in the spectrometer.
The divergent optical beam that originates from the entrance slit is collimated by the first
parabolic mirror in such a way that a plane wave is generated at the grating. After reflection
on the grating, the light is focused on the output slit by a second parabolic mirror. Behind
the output slit a photomultiplier is placed as detector.
The resolution of a grating is theoretically given by:

λ

∆λ
= n ·N, (31)

whereN is the number of lines on the grating that contribute to the interference pattern.
In practice the achieved resolution of a grating depends mainly on the way the light falls onto
the grating. Grating lines that are not getting enough (or any) light do not (fully) contribute
to the final interference pattern. They reduce the actual value of N, and consequently the
resolution. The width of the light beam that falls onto the grating is determined by the inter-
ference at the entrance slit. This is shown schematically inFig. 11. To be on the safe side,
for a maximum resolution a very small entrance slit would be the right choice. The disad-
vantage of that is that a small entrance slit greatly reducesthe light intensity that enters the
spectrometer. This means that in practice one has to find a compromise between resolution
and intensity.



source

condensor

entrance slit

output slit

g
ra

tin
g

p
a
ra

b
o
lic

 m
ir
ro

rs

Figure 9: Schematical optical path inside the grating spectrometer. The grating is rotated
around its vertical axis to select the wavelength of constructive interference, that is directed
towards the output slit.

Figure 10: Photograph of the inside of the spectrometer. In the center of the picture, one
sees the grating with the drive-mechanism in front. The two boxes in the far corners are the
entrance slit and the output slit.



Figure 11: Relation between entrance slit width (X-axis) andmeasured line width (Y-axis).
The inserts show the corresponding illumination of the grating

5.2 Calibration Source

Before the actual measurement of the Hygrogen/Deuterium isotopic shift, the wavelength
scale of the spectrometer is calibrated by using a Hg/Cd calibration light source. This lamp
emits 12 well defined spectral lines with known frequencies (please see Table1) that cover
the frequency range that later is needed for the detection oftheα – δ lines of the Balmer
series of Hydrogen/Deuterium.

Table 1: Table of calibration wavelengths
Nr. 1 2 3 4 5 6
λ/ Å 4046.6 4077.8 4358.4 4414.6 4678.2 4799.9

Nr. 7 8 9 10 11 12
λ/ Å 4916.0 5085.5 5460.7 5769.6 5790.7 6438.5

5.3 H/D-source

To generate the Hydrogen/Deuterium spectral lines a discharge tube is used (see Fig.12),
that should only be used in thevertical position. It contains a mixture of H2O and D2O.
After a short warm up time (approx. 5 min) the lamp should burnsteadily.



Figure 12: Hydrogen/Deuterium discharge source with the condensor lense in front.

5.4 Light Detector

The detector at the output slit is a photomultiplier. It generates a current as measure of
the light intensity, which is measured by a picoampere meter(Fig. 13) that is interfaced
with a computer by an AD-converter for data acquisition. To minimize the bit noise in the
digitalized signal, the picoampere meter should be adjusted for each measurement in such a
way that the largest possible sensitivity is used. (This means that on the analog front display
of the picoampere meter the needle should, of course, not go off scale, but at the same time
the sensitivity should be adjusted in such a way that the largest possible portion of the scale is
used.) In addition care should be taken to adjust the offset to insure that the needle remains
above zero when there is no spectral line signal, because theAD-converter is not able to
convert negative voltages.

5.5 Software

The data acquisition is done by the program "PH1-Spectrometer", see Fig.14. The data
acquisition is automatically synchronized with the rotation of the grating during the mea-
surement. The control of the experiment, however, is not done by the computer but it is in
your hands. The procedure is as follows: Before the measurement, the grid is positioned in
such a way that the wavelength reading on the spectrometer isslightly (3–4 Å) below the
expected peak value of the line. This start value of the wavelength needs to be typed in into
the program by the experimentalist. In addition, a (meaningful) filename has to be chosen
and the computer has to be switched to the ready-to-measure state (scan). The actual mea-
surement is started, by you, from the grid motor control by activating the scan switch. The



Figure 13: Photograph of the picoampere meter to measure thedetector current

measurement is ended by the same switch, after checking on the display that the spectral
line has been properly measured. The wavelength values are generated automatically from
the start value that has been typed in and the number of steps.The data are saved as an
ASCII-table.

Figure 14: Data acquisition program at the end of the measurement



5.6 Measurement Equipment

• Grating: 1200 Lines/mm,λBlaze: 5000 Å

• Parabolic mirror: 50mm diameter, 350 mm focal distance

• Slit height: 3 mm

• Slit width: continuously adjustable, 1 mm equals∆λ ≈ 20 Å at 6328 Å

• Rotation of the grating: Step motor, with measurement velocity 0.05 Å/s – 100 Å/s.
(0.05 Å/s is recommended for the H/D measurement, 0.1 Å/s for the preceding mea-
surements).

• Photomultiplier: Bias voltage 800 V; Long wavelength sensitvity cut off: 7 000 Å

• Picoampere meter: can be used to compensate for the photomultiplier dark current.
(Please start measurements at a low sensitivity scale and adjust accordingly after-
wards.)

6 TO DO

1. Adjustment of source and condensor outside the spectrometer box

2. Determination of the optimum entrance slit width.
Data analysis immediately, during the lab course.

With the optimum width for the entrance slit:

3. Calibration of the wavelength scale

4. Measurement of the wavelengths of theα-, β-, γ-, andδ-lines of the Balmer series of
Hydrogen and Deuterium

5. Data analysis afterwards:

- Determine the Rydberg constants for H and D from the measuredwavelengths;
include an analysis of the accuracy of the result.

- Calculateme/mH from the Rydberg constants, again with accuracy analysis

- Determine the mass of the Deuterium atom; with accuracy analysis

- Calculatee/me using in addition the Faraday constant

- Compare all experimentally determined values with values given in the literature
and discuss the results.



7 Questions

1. Give the Bohr postulates.

2. What is the size of the Bohr radius (radius of the first orbit) of the Hydrogen atom?

3. What is the size of the radius of the first orbit ofµ-onic Hydrogen?

4. Give the formula that relates energy and wavelength of photons.

5. What is the energy range of the photons of visible light?

6. Derive the equation for the reduced mass.

7. How large is the isotopic shift of then = 3→ n = 2 line of Hydrogen towards Deu-
terium, calculated with Bohr’s model?

8. How do interference filters work?

9. What is a Fabry Perot Interferometer (FPI)? Is it possible to use a stand alone FPI to
do spectroscopy?

10. How large can the resolution of a prism spectrometer be (Formula and value for a
practical example)?

11. How large can the resolution of a grating spectrometer be(Formula and value for a
practical example)?

12. How large should one choose the entrance slit to just illuminate the whole grating with
the main lobe of the slit’s diffraction pattern?

13. What is a phase grating? Why is that the preferred type of grating for this experiment?

14. Why is an image of the radiation source (lamp) projected onthe entrance slit with the
use of a condensor? What type of optical element is the condensor? What do you think
of the possibility to do a successful experiment without thecondensor?
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