
Introduction to

Modern Physics Monograph Series
E D I T O R :  F E L I X  V I L L A R S ,

Massachusetts Institute of Te chnolog y
R O B E R T  T .  S C H U M A C H E R ,

C arne g ie- M e I lon Uniue rsit y
Introduction to Magnetic Resonance:

Pr inciples and Applications

agnetic Resonance
I' r i nciples and Applications

ITOBERT T .  SCHUMACHER
( drtu,g ie- MeIIon Unioersitv

rt . l  Benjamin, Inc.. New york. 1970



I N  T R O I ) U C I  I O N  T O  M A G N E T I C  R E S O N A N C E

Contents

E D I T O R ' S  F O R E W O R D

P  R E F A C E

C H A P T E R  I

Basic Principles

l -1 .  Def in i t ions
l-2. Energy in an External Magnetic Field: Spatial
l-3. Stern-Gerlach Experiment
l-4. The Rabi Magnetic Resonance Experiment
l-5. Applications and Literature Survey

vlt

I

I
Quantization 3

4
7

l 9

C H A P T E R  2

Macroscopic Properties of Nuclear Magnetism

2-1. The Equilibrium Distribution
2-2. Energy, Magnetization, and Susceptibility
2-3. Response to an Alternating Field; Complex Susceptibil i t ies
2-4.  The Bloch Equat ions
2-5.  Solut ions of  the Bloch Equat ions
2-6. Some Experimental Considerations
2-7. Conclusion and Literature Survey

CHAPTER 3

Line Widths and Spin-Lattice Relaxation in
the Presence of Motion of Spins

3-1. Introduction
3-2. Random Walk Calculation of Z
3-3. Very Short Correlation Times: äot" < |

22

22
28
30
34
36
43
55

58

58
60
63



xii Contents

?-1 Random Frequency Modulation; Spectral Density
3-5. Some Applicarions
3-6. Summary and Literature Survev

C H A P T E R  4

Nuclear Magnetic Resonance in Solids
4-1. Rigid-Lattice Hamilronian
4-2. The Method of Moments
4-3. Thermodynamics of Spin Systems
4-4.  Nuclear  Quadrupole Interact ion
4-5. Spin-Lattice Relaxation in Soli<ls
4-6. Summary and Literature Survev

C H A P T E R  5

Magnetic Resonance in the Alkoli Metals
5-1. The Pauli Susceptibil i ty of an Electron Gas
5-2. The Electron-Nuclear Interaction
5-3. Conduction Electron Spin Resonance (CESR)
5-4. Literature Survev

C H A P T E R  6

M isce llaneous Subjec ts
6-1. Cyclotron Resonance
6-2. Optical Pumping
6-3. Magnetic Resonance in Excited States
6-4. Literature Guide

A P P E N D I X

Some Quantum Mechanics of Spin I

I N D E X

64
72
88

9l
92
97

100
l l 0
122
t27

130
130
1 3 3
t42
150

r52
t52
t72
1 8 8
206

209

217

C H A P T E R  I

Basic Principles

l l istorically, experimental investigations into the quantum properties of
angular momentum and magnetic moments followed the same course that
now seems to be the most natural in introducing the subject conceptually.
This first chapter is concerned with the concepts and the experiments on
isolated atomic systems wi th angular  momentum, which began wi th the
molecular  beanr exper iments of  Stern in  thc 1920's and which lead natura l ly
in to lhe rnagnet ic  rcsonancc exper iments of  Rabi  in  the 1930's.  The
rnater ia l  is  probably länr i l iar  to  a l l  s tudcnts wi th thc background of  an
int roductory course in  modern physics.  However,  i t  is  recommended
that even students with confidence in their command of the subject study
the chapter, if only to identify special terminology and points of view relied
upon in later chapters. The student who finds the quantum mechanical
references of Section l-4 somewhat obscure should repair to the brief
Appendix for some help, at least in the mathematical manipulations of the
quantum mechanics of the spin j system in magnetic fields.

I - I .  DEFINITTONS

A system consisting of a mass undergoing circular motion about a fixed
point in a plane has angular momentum. If the mass carries electrical
charge, it has a nugnt,tit ' tnoment that is proportional to the angular
momentum. It is comforting to know that such simple statements are
true in general for quantum mechanical systems, and that, for magnetic
dipole moments, the proportionality factor is a scalar. The theorem
stating this is an application of a powerful and ubiquitous statement known
as the Wigner-Eckart theorem. We are concerned with angular momenta
of various atomic, nuclear, and elementary particle systems. Table l-l
shows the conventional symbols used for most of the systems in which we
are interested. When the discussion is about an abstract angular momen-
tum vector, we usually use the vector symbol J, which serves also as the
total angular momentum of an atom.
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We also f ind i t  convenicnt  to  consider  thc angular  momentum vector
symbo ls  t o  be  d imens ion less ,  and  to  d i sp lay  t hc  un i t s  i n  wh i ch  angu la r
momentum is  measured expl ic i t ly .  fhc furrdamental  uni t  is ,  o f  course,
h l2n :  f r ,  P lanck 's  constant .  Thus,  the Wigner Eckar t  theorem states
s imp ly

11 : yhJ ( l - l )

where y, the gyromagnetic ratio (more rationally, the magnetogyric ratio)
is the scalar promised by the theorem. Now, if one pursues the example of
the opening paragraph, the factor 7 can be calculated immediately. The
angular momentum is l lrJl : lr x nlvl : ntr2e), where r is the orbit 's
radius, o the angular frequency, ä, the mass, and v the velocity. The
magnet ic  moment,  in  Gaussian uni ts ,  is  1r :  iA lc ,  where I  :  r r2 is  the
orbit 's area; the vector is perpendicular to the orbital plane, as in the case
of the angular momentum. Thus,

i A  _ i n r z  _ q @ r 2  _ J h q
c c 2 c 2 m c

(r-2)

I f  the par t ic le  is  an e lect ron wi th charge e:  -4.g x l0-1o esu,  and
mass rn:9. I x l0-" g, the gyromagnetic ratio, y: ef2mc, is related to
the Bohr magneton:

P" :  
* :  

hY :  -o 'g27 x lo-  20 ergs/G

For nuclei, it is convenient to define a nuclear Bohr'magneton

I ' " : l # :  5 ' 05  x  l o -2a  e rgs /G

where M is the proton mass.

Basic Principles

Electrons, protons, neutrons, and p mesons have intrinsic angular
momentum. Atoms and nuclei of interest to us are compound systems,
the total angular mornentum and magnetic moment of which are still
proportional by the Wigner-Eckart theorem, but the proportionality

factor of which depends on the details of the system. Those details are
conventionally absorbed into a g factor, or spectroscopic splitting factor.
This factor is gr, the Landö g factor for atoms, or g :2.000. . . , according
to the Dirac equation, for electrons and p mesons. We define the nuclear g
factor by analogy. For the most part, it remains an experimental parameter
characterizing nuclear moments, since, in most cases, nuclear theory is not
yet able to provide better than rough estimates of its magnitude. In
general .  then,  the expression

(  1-3)

l r t : { l  r l t o l : y , h l

gives the relation between p and J, or f, and it defines g. Equation (l-3)
also defines the gyromagnetic ratio y, which is now g(el2mc) for a system
with intrinsic angular momentum (spin). Tables, particularly the most
commonly encountered tables of nuclear moments, publish a quantity
called " the magnetic moment in units of the Nuclear Bohr magneton."
The maximum projection of J along any axis occurs for the state Mr:J.
The magnetic moment is p, : gBoJ, and the published number is g,/.

I-2. ENERGY IN AN EXTERNAL MAGNETIC FIELD:
SPATIAL QUANTIZATION

The energy ä of a magnetic moment p in an external fieldr H is given by
the familiar expression

E :  _ F  . H

or, in terms of the angular momentum,

(l-4)

u,: n,(#lot : no"7 : v.hr

'  
E:  _ gBoHml ( l -5)

. 
' [n a vacuum it does not matter whether one uses H or B for the magnetic field if

the quantities are expressed in Gaussian units. Strictly speaking, one siould use g,
oul conventionally most of the literature uses f/, a practice that we follow. occasionally
r( ls lmportant to make the distinction in solid state physics applications, and then itts wefl established that the correctly calculated B is to be used.
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where r lJ  is  the pro ject ion of  J  on H.  Quantum mechanics rest r ic ts  mr
to the 2J + I integrar or halr'- integral varues. The energy-lever dragram
corresponding to Eq.  ( l -5)  is  shown in F ig.  l_1.

I -3.  STERN-GERLACH EXPERIMENT

The application of a magnetic f ierd H removes the 2J + | degeneracy ofthe magnet ic  subrevels,  as we have seen.  Ar though these st i tes are nolonger degenerate, the energy differences between them are very small.In  a f ie ld of  l0a G,  Eq.  (  I  -5)  corresponds ro an encrgy separatron of ,  I  cm 
_r

or  about  l0-a ev for  e lect ron moments,  l0-a cm in.  rb ,  
"v  

ro.  nuclear
m-oments' This energ_y difference must be pcrccivc<J against a background
of  200 cm-r  or  0.025 ev of  thermal  

"n. rgy 
at  ro() l '  tcr rpcrature andseveral  erectron vol ts  of  energy for  atomic t ransi t i .ns.  Unt i l  the ear ly1920's, the consequences of spatial quantization had been manifestedprimarily through the Zeeman effect and the Faraday and other magnero-

optic effects' The Zeeman effect was incompletery unaerstooJ frior to ttr"discovery ofelecrron spin, and the quantitative reiation ofspatiäl quantiru-
tion to the Faraday effect was obscure.

The reality of spatial quantization was demonstrated in a particurarly
graphic fashion by the Stern-Gerlach experiment, successrulry performed
in 1922. If a beam of neutral atoms pasies through u rron-'ogän'.ou, -ug-
netic f ield, it is undeflected by that f ierd, even though the l 'agnetic de-generacy is l i fted. But if the field is not spatiaily horiogene.rr,.,"th.." i, u
net force on the moments in the beam thai is given by ,i" 

"^pr"rrron

J in magnetic

F: (F' V)H: ,,U# * , ,# * u"# (  l -6)
F : 0  F r : F " :  ! " ( l - 8 )

Basic Principles

There is a component of this force that is constant while the.rnoment is
in the gradient, and it produces a deflection ofthe beam thatris propor-
tional to ;r,. To see that, choose the following simplest pobsible field
gradient. See Fig. l-2. The beam travels in the x direction with the

r  l  i l  | J H t d z
r ' - - - l l l  |  |  I
. ' v c r r l l i  

-

1  | l
-  l '  I  I n r g n c r

c u l l | l n J t l n g

l r
t /

l lz
ltt
\/ L-,
tlx{ /DcJmt__J x

s e c t i o n  c  -  c '

1.,

de tec tor

( b )( a )

Fig. l-2 Schenratic representation of Stern-Gerlach apparatus. (a) Arrange-
ment of main components: oven, col l imating sl i ts, magnet, and detector.
(b) Cross section c - c '  of (a). (c) Enlarged view of beam and magnetic f ield in
region of the beam. (d) Appearance of f i lm deposited on substrate in original
experiments of Stern.

{ ie fd  a r ranged so  tha t  H, :0 .  The f ie ld  i s  p r inc ipa l l y  in  the  z  d i rec t ion .
A l l  der iva t ives  o f  / /  w i th  rcspec t  to  - r  van ish ,  and,  in  the  beam reg ion ,
b o t h  V ' H : 0  a n d  V x t l : 0  a r e  s a t i s f i e d .  T h e  c o m p o n e n t s  o f
Eq.  ( l -6 )  a re

F,  :  o  F, :  t t , *  .  L , ,d# F, :  t jy*  .  p ,a# (1-7)

Furthermore, let the beam lie in the symmetry plane y : 0, where
Hr=0  (F ig .  l - 2c ) .  Then  AHr löz :0 ,  and ,  s i nce  V  x  H :0 ,  )H , l öy :
i t l r l öz :0 .  S ince  V .H :0 ,  AH" l ) y :  - 0H ,102 ,  Eq .  ( l - 7 )  r educes  to

eH,
0z

L-
( d )( c )

aH,
- Fu 

-a-
' .JZ
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In the next section, we emphasize in great detail that the magnitude of
the field 11" produces a torque lr x H, causing a precession about H (which

is virtually entirely H" at the beam coordinate) such that 1r, is constant and

1r" oscil lates about an average value of zero. So the only component of
the force that produces a net deflection is in the z direction, and it may be
written in terms of the magnetic quantum number as { : mtgBo(öH,löz).
The presence of m, means that the beam splits into 2J + I components.
The first experiment was done on silver (partly because the deposit
could be easi ly  "  developed ") ,  and two components were seen,  as i l lust rated
in Fig.  l -2d.2 We now know that  2J + |  - -  2  requi res J :  , ,
and  tha t  t he  g round  s ta te  o f  t he  s i l v c r  a t t t n r  i s  an  o rb i t a l  S  s ta te  w i t h  a
s ing le  e lec t ron  o f ' sp in  l .  l he  l i r s t  expc r lmen t  was  d< tne  p r i o r  t o  t he
discovery of  e lect ron spin.  but  the resul t  was not  In lerpreted as requi r ing
hal f - in tegra l  sp in s ince i t  was assumed s i lver  had an orb i ta l  angular
momentum L :  I  and the nt r :0 s tate was not  a l lowed in o ld quantum
theory.

Even in its simplest form the experiment has several components, none
tr iv ia l ,  so that  molecular  beam exper iments have long been known as the
most  d l f f icu l t  in  atomic physics.  The exper imenta l  problems to be
solved inc lude a h igh enough vacuum so that  a typ ical  beam atom can
traverse the apparatus wi thout  co l l id ing wi th a rcs idual  gas molecule in  a
meter  or  more of  f l ight .  The source,  usual ly  an oven wi th a smal l  hole,
must  produce a wel l -co l l imated beam. The f ie ld gradient  must  be as
large as possible, but the magnetic f ield itself cannot change too abruptly
in time as sensed by the moving magnetic moment that passes from the
fieldfree region to a region of maximum field gradient, and then out again
to a fieldfree region before striking the detector. Finally, some device
must  detect ,  wi th considerable spat ia l  resolut ion,  the beam intensi ty .  The
modern solution of these problems is discussed in detail in the definit ive
monograph on molecular beams by Ramsey [2]. A somewhat briefer
discussion appears in another standard reference in the field of magnetic
resonance, Kopfermann's Nuclear Moments l3l. Among the refinements
particularly useful when two Stern,Gerlach apparatuses are put in serres
for the standard molecular beam resonance experiment (Section l-4) have
been velocity selectors between the oven and the field region so all mole-
cules in the beam receive the same deflection. Sophisticated universal
detectors, which partially ionize the beam and send it through a simple
mass spectrometer before it registers on the ultimate detcctor, have also

2 The student wi l l  f ind i t  an amusing exercise in the propagat ion of  crrors to watch
for  i l lustrat ions such as Fig.  l -2 in which the beam is t ravel ing in the 7 di rcct ion,  r rans-
verse to the long dimension of  the apparatus.  As far  as I  can determine,  the f i rs t  such
incorrect illustration appeared in A. sommerfeld's Atombau und specrrallinien [l), in
al l  edi t ions subsequent to 1923. l t  is  reproduced in many texts o i  rhat  school ,  but  i t
a l so  s t i l l  appea rs  i n  t ex t s  pub l i shed  i n  t he  Un i t ed  S ta tes  as  r ecen t l y  as  1967 .
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been developed. (See references listed at the end of the chapten for more
discussion of experimental techniques.)

The Stern-Gerlach technique, by itself, reached its pinnacle of usefulness
under the direction of Stern, particularly with the aid of Otto Frisch and
I. Estermann. Although the resonance method of Rabi did prove to offer
unheard of precision compared to the nonresonant experiments, the
basic technique did provide a few triumphs beyond the first demonstration
of spatial quantization. one of these was the discovery of the anomalous
g  fac to r  o f  t he  p ro ton  ( i . e . ,  t ha t  Qp :5 .59 . . .  r a the r  t han  g :2 .000 . . . ,
as expected from the Dirac theory of a spin ] particle). The initial report
of this work appearedin Nature in 1933 [4], and it is a model of elegant
brevity. The student who understands it, sentence by sentence, has a
good working grasp of many of the necessary fundamentals of modern
physics.

It should be emphasized that the Stern-Gerlach apparatus is a very
useful practical example of a quantum mechanical state selector, or beam
polarizer. The separated beams of moments of that energy from the
f ie ld gradient  region,  each character ized by i ts  own Drr ,  r , rc  polar ized.
The apparalus may be reversed in funct ion and a par t ia l ly  or  l 'u l ly  polar ized
beam sent in. Its trajectory in the apparatus is determined by the state
function (i.e., the ntrlevel) of the constituents of the beam, so the appararus
now functions as an analyzer. These functions are important to undcr-
stand and distinguish in following the magnetic resonance experimcnt of
Rabi. A comprehensive discussion is given in volume 3 of the f 'c'1,nmun
Lectures on Physics l5l.

I -4.  THE RABI MAGNETIC RESONANCE EXPERIMENT

If a Stern-Gerlach apparatus can be a state selector, it can also be an
analyzer. What could be more natural than to put two of them in series,
with some experiment in between? In the 1930's, Rabi, who had done
postdoctoral work under Stern at Hamburg, performed the first magne(ic
resonance experiment and made the first precision nuclear magnetic
moment measurement, in a homogeneous magnetic field between a
polarizer and analyzer. Figure l-j shows two inhomogeneous fields,
produced by the conventionally designated ,{ and .B malnets, with the
homogeneous C magnet between them. In the C region, the magnetic
resonance experiment causes transitions between magnetic quantum
levels. Consider a J: I system. Figure l-3 shows the polarizer and
analyzer with field gradients in the same direction. Also, care is taken
that the direction of the field ä itself always points in the same direction.
At the end of the polarizer, one of the two separated beams may be deflected
or stopped by a baffie, leaving a beam of pure mt : I particles, for instancc,
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I  rnagnet (  r r t a g n c l B  n r a g n c t

Fig. 1-3 Fields and beam trajectories in Rabi resonance experiment. The
solid curved line is a greatly exaggerated trajectory for a spin + system that
undergoes artransition from mt : L to mr: - | in the resonance region R in the
homogeneous C magnet. The dotted line in the B magnet represents the path of
a molecule fhat does not undergo a transition and is prevented by the baffie
from reaching the detector.

to enter the C magnet. lf nothing is done to them there, they enter the
sdcond Stern-Gerlach apparatus where they are further deflcctcd. lf the
detector is placed to detect a beam that comes through undeviated, it wil l
detect no signal. If the beam in the C region is manipulated so that some
or all of the moments are put into the mt: -I state, then in the B field
their deflection wil l be down, and, if the I and .B magnets are identical,
then the B magnet will reverse the deflection produced by the A magnet,
and the beam will hit the detector.

Some of the preceding details are arbitrary and of no particular im-
portance. The experiment as described is known in the molecular beam
trade as a" flop-in " experiment: the change of state in the C region causes
the beam to " f lop-in " to the detector. A different position of the detector,
or reversal of the gradient in the .B region, could result in a " f lop-out "
experiment. What is not unimportant is the maintenance of a magnetic
field oriented in the same direction through the apparatus, or, if the field
does reoilent, it must do so slowly, as seen by the moment as it moves
through the various regions. The first restriction is required so that the
beam remains in the same quantum mechanical state unless a transition
to another state is deliberately produced in the C region. The second
restriction is required so that no " accidental " transitions occur between
magnets.

Basic Principles 9

We turn now to the theory of the magnetic resonance experiment. The
quantum mechanical and classical equations of motion of a spin in a
magnetic field are identical: the latter equations are for classical angular
momenta and magnetic moments; the former are for expectation values
of angular momentum operators. It is often sulncient to consider only
the classical case. Figure l-4 shows an angular momentum J, moment p,

I

J , F

Fig. 1{ Magnetic moment p: yhJ precessing in a constant ficld llu. Ihc
figure is drawn for positive y.

inclined at an arbitrary angle with respect to the z axis, thc l iclcl dircction.
The classical equation of motion is

t

(  l - ' ) )

The change in J during dt, dJ : yfiJ x Ho dr, is perpendicular to thc planc

defined by the vectors J and H6. The motion is a precession, with J
defining a cone with the axis Ho. The angle between J and H,, rcnlatns
constant .  The precession f requency,@o:7f1o,  is  known as the Larnror
frequency.

In the molecular beam resonance method, äo is a spatially homoge ncous
field produced by the C magnet. In addition, a transverse alternltrrlg
field f1,(t) is applied at frequency ro in the C magnet region.

Hr( l )  :  2 lH,  cos at  (  l -  lO)

In the presence of the alternating field, the equation of motion is

, # :FxHo :y f r JxHe

# 
: ,t x (käo + lzH tcos cof) ( r - i l )
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The problem is to find J(l). Approximate solution to (l- l l) can be
obtained easily by transforming to an appropriate rotating coordinate
system. There is a theorem, proven in all classical mechanics courses,
to the effect that the time derivative of J as viewed from a rotating
coordinate system, öJl0t,is related Io dJldt, the time derivative as viewed
from a stationary coordinate system, by the expression

dJ AJ
- - : - + c ) X J
d t  d t

AJ
; + o r x J - 7 J x H o
o l

H . r r :  H o  1 9

( l - 1 2 )

where o is a vector whose magnitude gives the angular frequency of
rotation of the rotating system and whose direction is the axis about
which the system rotates. Some necessary insight is obtained by sub-
st i tu t ing ( l -12)  in to ( l -9) :

( l - l  3 )

That is, as far as the rate of change of J is concerned, transforming to a
rotating reference system at o is the same as adding an effective field
<rr/7, and considering the motion in the effective field

(  1 -14)

It follows immediately that J is time independent in a rotating coordinate
system such that H.r:O, or ot: -?Ho. The result, and the trans-
formation, are intuitive for this case. The sense of rotation of J, as seen
in the laboratory (i.e., stationary) frame in Fig. l-4, is just the sense of
rotation of the rotating coordinate system necessary to ,. stop " the motion.

The solution of the problem with alternating (or, conventionally, radio
frequency or rf) field, Eq. (l-ll), can be obtained from the rotating co-
ordinate transformation after observing the following: decompose I1r(r)
into two circularly polarized components of equal amplitude rotating in
opposite directions in the xy plane.

ui: rt ' (". * ?)

H'(t) :  H" + Ho ( r -1s)
(1 -18)

Basic Principles I I

where

H. : l/1(l cos @t + t sin ctrt)

and

Ho : llr(l cos cot - J sin cr.rt) ( l -16)

Simple inspection shows that Ho is rotating in the same sense as the
moment in Fig. l-4, and Ho in the opposite sense. A rotating coordinate
transformation to a system defined by or : f<o leaves the field fl, stationary
in the transformed system, but the component rotating in the opposite
sense rotates at 2a in the rotating coordinate systern To see that we
may neglect Ho under most circumstances, examine the effect of Ho alone.
Figure l-5 shows the fields Ho and H, as they appear in the rotating system

Flg. 1'5 Fields and angles in the coordinate system rotating at r^r: -ft<,r.

in which Ho appears stationary, that is, the rotating system defined by the
transformation or : -ficr.l.

The effective field in the z direction is k1.ffo - coli from Eq. (l-14).
The total effective field is given by

Hcrr: f .(*rr - 9) + rH,
\  7 /

The angle 0 is defined by

t a n  0 :  
H l

Ho - aly

(1 -17)
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The motion of a magnetic moment init ially along the z direction consists,
in the rotating system, of precession about H.o with an angular frequency
@"n: lH,n with the angle 0 constant. That is, the vector lr precesses on
the surface of a cone having angle 6 and axis H.6.

A brief digression from the main line of the development is necessary
to dispose of the counterrotating component IIa. The fields we have
considered produce their effect by virtue of being static in the rorating
frame. H" rotates at 2o in that frame, . rhich means that whereas it acts
to produce the same general effect as H, when it is approximately parallel
to it, it produces the opposite effect at a time nl2at later, when it is directed
opposite to Hr. On the average, we expect its effect to be zero. This
resul t  has several  consequences.  F i rs t ,  i t  is  only  necessary to apply a
l inear ly  polar ized r f  f ie ld in  the C region,  lbr  we shal l  be cer ta in,  regardless
of  the a lgebraic  s ign of  1, ,  that  one of  the rotat ing colnponents wi l l  produce
some precession of  the moment away f rom the z d i rect ion.  We arb i t rar i ly
chose the magnitude of the l inearly polarized field to be 2Hr, so that the
rotating component's amplitude would be the conventional i l ,. We
could have applied a circularly polarized rf f ield, and that procedure is the
one commonly used to determine the sign of 7.

The arguments we have used to dispose of the counterrotating com-
ponent were qualitative ones. Quantitatively, the neglect of the counter-
rotat ing component  is  va l id  only  i f  (Ht lHol  < l .  [ - -xper iments have been
done in f ie lds for  which th is  inequal i ty  is  not  wel l  obeyed.  The resul t  is
a shi f t  in  the radio f requency that  produccs the rnaximunr e l fect  in  t ipp ing
the moment to the -z  d i rect ion.  l t  goes by the name "Bloch-Siegert
shift."

For future work, it is important to notice here the obvious fact that as
the moment begins to precess around fl.tr, i t acquires a component in
the xy plane. In the laboratory fiame, that component is rotating at the
angular frequency ro. To make the connection with the magnetic res-
onance experiment done in the C-field region, between two Stern-Gerlach
apparatuses, we must discuss transitions between ,r?r states, something the
preceding discussion of a classical moment seemingly contains no hint of.
Let us specialize the discussion to the case of a spin + system. The orienta-
tion of the classical moment along the z direction is related to the prob-
abil ity that the spin is in the + ] or - ! mr state. If the spin wave function
is  lX) :  a l t> + b l - t>,  then P(] ) ,  the probabi l i ty  the spin is  in  the l | )
s t a t e ,  i s  l ( 1 l r ) l ' :  l a l 2  a n d  P ( - + ) :  l ( * ] l r ) 1 ,  : l b l 2 .  W e  c o n s i d e r  t h e
function.

c o s a : l o l ' - l t l t  0 < a < z ( l - l e )

with the subsid iary normal iz ing condi t ion that  la l2 + lb l t  :  I  ( there is
certainty of f inding the spin in one or the other of the states). The function
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cos a has, in fact, the properties of the projection of the spin on the z axis,
and it is through cos d that we make the connection to the classical cal-
culation. Again, defining cosd: tt.Hollpll}Iol, we find, after some
three-dimensional geometry,

where we assumed the boundary condition a : 0 at / :0. Using the
normal iz ing condi t ion la l2 + lb lz :  l ,  we can a lso wr i te  ( l -19)  as

c o s d : 1 - 2 l b l

Comparison of (l-20) and (l-21) yields immediately

( l - 21 )

cos  d  :  I  -  2  s in2  g  r inz^ lHt t t
2

P(- i )  :  lb l t  :  s in2 0 s in2 Ü: !
2

(l-20)

(r-22)

for the probabil ity that, at t ime r, the spin is in the state nrr : - *, having
started in state mt : L at t : 0.

Equation (l-22) checks the result obtained by inspection of Fig. l-4;
namely, that for 0:9O", the spin precesses to the -z direction in a time
t : nf a"p : nlyH.r. Of course, 0 : 9O" corresponds to the condition of
exact resonance.

a  :  u ) o :  l H o ( l -23)

I t  is  c lear  f rom ( l -21)  and ( l -22)  that  the probabi l i ty  of  a spin being
in either of the rn, : * l states varies periodically, with a full cycle com-
pleted with angular frequcncy yll.o . What is less clear, since we have not
done a full quantum mechanical treatment but have only made a plausible
connection to quantum mechanics, is that the amplitudes c(l) and ä(r) of
the m1 : ** and Dt1 : - | states, respectively, vary in time in a coherent
fashion. The significance of that statement is that the transverse com-
ponents of angular momentum operators, ,/, and ,I '  have nonzero but
time dependent values. For our future discussion of transient methods
in magnetic resonance, as well as the discussion of the Ramsey modification
of the molecular beam resonance method, it is most interesting to imagine
doing the experiment at exact resonance (sin 0 : l), and turning off H,
when cr.r.6: : nl2. Then P(]): P(-+) : +. In rhe rotating frame, the
amplitudes a and b are constant and equal in magnitude (but, since they
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are complex, not n€cessarily equal in phase). We can write the spin
wave func t i on  l 1 )  t obe  l 1 )  :  ( 2 ) - t r z  t l l )  +  e * ' o  l - ] ) 1 .  Theexpec ta t i on
value of .1, is, if we suppress the time dependence from the Larmor pre-
cession.

(/,) : *t(*l + e-tö <-ylJ,|+) + e'0l-t>)
: 1t(1U,1 -I)e'$ + (-l lJ,l l) e-tof (t-24)

where @ is the phase difference between a and b. It would, in fact, be
zero for  the example we have used.  The important  point  is  that ,  just  as
in the classical case, the angular momentum has been turned over toward
the xy plane. Viewed in the laboratory frame, it is precessing at crro ,
and wil l continue to do so indefinitely with the sante phase as long as nothing
perturbs it. The point to emphasize is that the transverse components
of J, J, and J, arise from coherent linear superpositions of state functions
of the various mr states. Later, when we deal with ensembles of spins,
the question of the relative coherence of the superposition from one spin
to the next wil l be crucial.

The Rabi rr.clecular beam magnetic resonance experiment is done by
applying a transverse rf magnetic f ield in the C magnet. The original,
and sti l l  common, method of applying the rf f ield is by means of the
"hairpin," shown in Fig. l-6. The intensity of the beam at the detector
is monitored as a function of the radio frequency <r-r. A typical intensity
1(<o) versus frequency curve has the bell-shaped appearance of Fig. l-7,

, - /""

beam

Flg. 1{ The " hairpin," a method of applying the rf field in the C magnet of a
resonance exDeriment.

_ c o s d
2

/(c,r )
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Fig. 1-7 Beam intensity at the detector as a function of the frequency of the rf
field in the C magnet.

which has been drawn for a hypothetical " flop-out " experiment. The
exact shape of the curve is of no particular interest to us, but there is
something to be learned by examining the origins of its width, Äro. Since
the first object of a beam resonance experiment is to find a.ro , it is important
to make Acrr as small as possible. Experimentalists sometimes use the
rule of thumb that the frequency @o can be located to within Äco divided
by the signal-to-noise ratio. (Of course, we showed no noise in Fig. l-7,
but it is inevitably there in experimental data.) In the natural effort to
make the signal as large as possible, to obtain the optimum " flop-out,,' the
experimenter adjusts the magnitude of H, so that, in language appropriate
to aJ : I system, the opposite spin state has the largest possible amplitude
at ro : @o. From Eq. (l-22), that occurs when 7-F1rr : z. The time I
here is the time of flight of the moment through the hairpin. Approxi-
mately half the amplitude of the signal occurs when ar is such that p(]) :
P(-t) : lt. We assume t and H, are fixed by the criterion Hrt : nfy.
Then the half-maximum intensity occurs for cos a :0 in Eqs. (l-20) or
(l-21), or P(-]) : lbl' : I in (l-22). We leave it as an exercise for the
reader-an exercise involving primarily the solution of a transcendental
equat ion- to show that  P(+) :P(-+) : I  when H.n:1.275Hb or
0:51.5o, and (f/e -ra.l:D:0.8I1r. It follows that the full width at
half-maximum intensity, the Äro of Fig. l-7, is Äar : l.6yHt. When it is
coupled with the other requirement, which we have expressed as yHrt : n,
we obtain

Lrlot : l .6n 0-25)
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Equation (l-25) looks very much like the uncertainty principle, which
relates the precision with which the energy may be established to the time
over which the measurement is made. That is exactly what Eq. (l_25) is,
for t is the time during which the system is in the probing fierd H,. Correct
use of the uncertainty principle argument would have obviated the some-
what tedious calculation of the l ine width, but the effort was worthwhile
since it was instructive.

To achieve greater precision, the experimenter must increase r, the time
in the apparatus. That goal can be accomplished by selecting the slowest
molecules coming from the oven-but with the certain result of a loss rn
intensity-and also by increasing the length in the beam direction of the
c-field magnet and the hairpin. The limitation rn atr.r, soon reached, is
not  f rom the preceding considerat ions,  but  rather  f r . rn the inhomogenei ty
of  the c f ie ld.  The larger  the magnet  the harder  i t  is  t .  pr .c lucc o.e wi th
a homogenei ty  of  f ie ld that  is  less than the natura l  l i r . i rar ions . l 'L ,q.  (  l -25) .
To overcome this l imitation, Ramsey devisetr a very beautiful technique,
which we examine briefly for its own sake and for what it can contrrbute
to the understanding of later magnetic resonance experiments.

Consider a monochromatic beam (i.e., constant velocity u) so that each
molecule in the beam spends the same time in the hairpin. Ramsey split
the hairpin into two parts, both driven by an rf oscil lator such that the
phase of the rf f ield is the same in each. They are both in the c maenet.
but  s i tuated at  opposi te exrremir ies of  rhe homogencous f ie ld.  r igurä t -s

l*- , -*l

C magne l

Fig. 1-8 Ramsey split rf field experiment.

r  h a i r p i r t

/
tt lv
l t t l
l l tt--^
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l-- / ---J
r l
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shows the arrangement and defines some of the quantit ies we need. The
length L is much greater than /. The latter is adjusted so that y H rt I : n12,
where t , - -  l f  u .  I f  the beam enters the hai rp in in  the nrr :  l  s tatc ,  i t
leaves in an equal admixture of nt, : ] and - 1 states, with phasc co-
herence in the admixture.  That  is ,  the angular  momentum is  in  the
transverse p lane and precesses f reely  about  Ho at  a: . lHo.  In  the t ime
t": [,f1t it takes for the beam to reach the other hairpin, it precesses an
angle <D in the ,r.r 'planc. We dcline the average field H-o and thc rverlgc
frequency o-o by the relatton

r D :  ö o  t L :  y H o t L (  I  - l t r )

The average -Eo is a spatial average of the f ields that the beanr secs. (Wc

have assumed fo r  s imp l ic i t y  tha t  the  beam has  zero  t ransverse  d i tnc t l s to t ts .

so  tha t  each moment  in  the  beam samples  the  samc l / , , . )  Ad lus t  thc

f r e q u e n c y  o f  t h e  o s c i l l a t o r  d r i v i n g  t h e  h a i r p i n s  t o  b e  c r a c t l v  r r t , , .  
. l  

h c r r

the  r f  phasc  o t ' l l ,  a t  thc  scconc l  h t r i rp i r t  i s  thc  sa t t tc  l t s  thc  phr tsc  o l -  t l t c

t r a n s v e r s e  c ( ) l n p ( ) l l c n t  o l ' . 1  .  t l r l r t  t s .  t h c y  l l t l c  t h c  s i t t n c  s p r t t i l t l  ( ) n c t t t l t t t ( ) l l .

s o  t h a t  i n  t h e  l ' r l t t i l c  r ( ) t a t l t l g  l r l  0 r , ,  l l r r  n l ( ) r ) r ( ' r r t  L ( ) n l i l l u c \  t l l c  p r ( ' r ' c \ \ l ( ) l l

f r o m  t h c  + z  t o  t h c  :  d i r c e t i o t t  t l t i r l  t t  \ l l r r t c ( l  t r r  l l r t  l t t : l  l t : t t r p t t l

F i g u r e  l - 9  i l l u s t r a t e s  t h c  p r c c c s s i o r t s  s c l t c r t t : r l r r r t l l v  t t t  l l t c  t o l ; t t t t r g  t c l c t -

e n c e  s y s t e m .  T h e  e x t e n t  o f  t h c  i r n p r r ) , v c n r c n l  o l  t l r r s  t c c l t n r r l r t c  o r c r  t l t c

s ing le  r f  f ie ld  reg ion  method can be  cs t t t t t r t t cd  by  thc  i l l )p r ( ) l ) r r . l t c  t r r r

cer ta in ty  p r inc ip le  a rgument .  The l ine  w id th  Aor* , , , , , " ,  wot t l t l  l l i l \ c  t ( )  ( ) [ )cv

Ä , r r " o - r . "  t t = 2 n  ( l - 1 7 )

by  ana logy  w i th  (  l -25) .  Hence.  Au)*un , , . " /Aoconvenr ( , . . , r  t , ' t  r .  l ' l  .  I  o

see tha t  t ,  i s  indeed thc  appropr ia te  "measurement  t in lc "  t ( )  i r l \ c l t  r r ' l  r r t l

uncer ta in ty  p r inc ip lc  a rguntcn t .  examine what  happcr ts  w l tc t t  l l t c  t l t r l t , r

f requency  is  no t  q t r i t c  r , r , , ,  bu t  i s  r r r , ,  *  A t r - rp .  We now c lc l i t t c  A l r *  p tc -

c i s e l y  b y  n o t i n g .  a s  s u g g c s t e c l  i n  F i g .  l - 9 b ,  t h a t  i f .  d u r i n g  t l t c  t t t t t c  / , . l l t c

r f  osc i l la to r  accuntu la tcs  phase O *  n ,  then the  H,  seen by  thc  s1 ' r i t rs  t t l  l l t c

second ha i rp in  i s  in  thc  l  d i rec t ion  in  the  f rame ro ta t l t lg  r l l  r r ) , r  I  hc

precess ion  o f  thc  sp ins  about  tha t  f ie ld  undoes the  work  o f  thc  l i r s t  l t r t t rp r t t .

so  the  sp ins  precess  up  to  the  +z  d i rec t ion  aga in .  l f  p recess ion  to  t l rc
-z  d i rec t ion  g ives  a  n rax in rum a t  the  de tec tor ,  then th is  scco t t t l  . rs t '

cor responds to  an  abso lu te  n r in imum in  the  s igna l .  The r l '  osc t l l r t to t

f requency  cor respond ing  to  th is  min imum s igna l  i s  jus t

(rr-ro + Ärr-l^)lr_ : rD * n

Lttt^ : + '1"

( l - l s )
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( e ,  ( t  )

Fig. l-9 Rotating frame precession of the magnetic moment in the Ramsey
split rf field experiment. (a) Precession in the first hairpin. (b) Average
orientat ion of J between hairpins. (c) Motion in second hairpin. (d), (e), and
(f) Same as (a), (b), and (c) except for reversal of rf phase at second hairpin.
See text.

( b )
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The full width between the minima is Äcop: X2nltr. Although
aco^ calculated this way is almost the same as the " blind " extension
of (l-25), not too much should be made of the fact since different quantities
are being calculated, which depend in detail on the shape of the tlsonarr"e
line. The shape of a Ramsey curve for a " flopin " experiment is shown
in Fig. l-10. The width ar.rr is roughly the width obtained if the split
rf fields are put together.

Fig. 1'10 Detector intensity as a function of frequency for the Ramsey
experiment.

I-5. APPLTCATIONS AND LITERATURE SURVEY
For precision measurements of magnetic moments, the simple stern-

Gerlach apparatus was almost totally eclipsed by resonance methods.
The molecular beam techniques by themselves have been used. however.
in some important investigations. one of the most obvious is the in-
vestigation of the velocity distribution of the beam emitted from the hole
of an oven at temperature ?". The last publication by Stern before his
retirement was an investigation of this subject, which, incidentally, was
the topic that prompted his interest in molecular beams in the first place.
In the paper by Estermann et ar. [6], the analysis of the velocities of the
molecules is done by measuring their fail, or downward deflection, in the
earth's grauitational field ! one rarely encounters any practical conse-
quence of an atomic particle's grauitational mass in laboratorv atomic
physics.

The combined Stern-Gerlach and magnetic resonance experiments of
Rabi gave the first precise measurements of nuclea, -o-"ntr, and they
are still used for this purpose, particularly, in recent years, to measure

I ( t : )
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nuclear moments of radioactive nuclei. The number of applications is
so large as to defy even reasonable enumeration. The student would be
advised to read the elementary review articles of Frisch [7] and of
Kusch [8], as well as to look into some of the comprehensive tomes, such
as Ramsey []. Reading the original l i terature in this field provides a
palatable introduction to scientif ic l i terature in journal form. Much of
it appeared in the 1930's, when brevity to the point of total obscurity was
not yet the hallmark of most papers in contemporary journals. The first
comprehensive discussion by Rabi et al. l9l of the molecular beam,
magnetic resonance method, and the first measurement of the anomalous
moment of the electron i l01 both are relatively readable by upper-division
students wi th vector-model  type command of  atomic physics.  Some
fur ther  appl icat ions of  par t icu lar  importance wi l l  be d iscussed in
Chapter 6.

I cannot resist concluding this chapter by remarking on the central
position occupied by the Stern-Gerlach experiment in modern quantum
physics. The reason seems not to be any particular uniqueness or pro-
fundity of the technique, but rather the simplicity of the technique as an
example of the problem of state preparation in quantum mechanics. It
serves not only as a favorite pedagogical vehicle (see Feynman, vol. 3 [5])
but also as a source of " gedanken experiments " for weighty discussion of
such vexing quest ions as the problem of  measurement  in  quantum mech-
anics. For an example of the latter, see wigner, symnretries antl Re-
fections i l l ], particularly p. 160, where the student should expericnce a
shock of recognition if he has read footnote 2. There is no doubr that
the Stern-Gerlach experiment, and the Rabi resonance experiment,
represent the most elegant, simple, and yet most profound physics
experiments of our century.

Problems

1-1. (a) Calculate the vacuum required ( in mm Hg) for an atomic beam expcri-
ment if the distance from oven to detector is I m. Express the result
in terms of the cross section o for collision between a beam at.nr and a
molecu le  o f  res idua l  gas .  Assume tha t  o :  l0 - r5  cm2 to  6b ta in  a
quanti tat ive answer.

(b) The atoms in the beam emitted from the oven do not havc the same
velocity distr ibution as the atoms in the oven. Sh.w that the beam
atoms have a verocity distr ibution proport ionar to r. ,r  exp[ 3nu2lzkr),
where u is the velocity, rn is the atomic mass, /< -.  l .3g .r lO-,u ergs.i
is Boltzmann's constant, and r is the absolute temperature. Find the
most probable velocity and the velocit ies u, and u, such that half  the
atoms in the beam have verocit ies between rrr ä'd üu . Let T - 500,K.

l-2.

I  -3.

t-4.
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(c) Assume the field gradient in the magnet is r0r G/cm, and that the
magnet is 40 cm long. Assume further that the detector is 50 cm
beyond the end of the fietd gradient region. Find the separation of
the two beams of silver atoms for the atoms with the most probable
velocity in the beam. Assume r: 500"K, and that the width of each
beam is as determined in part (b).

Let the hairpin of Fig. r-6 be lo cm long, the separation between the
wires 3 mm, and the wires I mm in diameter. Find the rf  current in the
wires necessary to produce a transit ion from the m, - ü to mr: _t
state of the ground state of silver for a beam atom of velocity l0r tm/sec.
what is the width of a resonance line in an apparatus operated under these
condit ions ?

How far below line of sight does a cesium atom of most probabre velocity
fall in a 2-m horizontal atomic beam apparatus if the oven temperature is100'c?

In our discussion of the Ramsey spl i t  f ield modif icat ion of the molecurar
beam resonance experiment, we assumed the beam molecules to have a
s ing le  ve loc i ty .  f ) i scuss  quar i ta t i ve ly  the  c .nsequences  to  the  l ine  shape
(Fig. l-10) i f  thc bcan'r is not monochronratic. Do not forget there are two
transit  t imes that may have somewhat dif fcrent consequences: the t imc
spent in the constant f ield region between the spl i t  r f  netas, and the t ime
spent in the rf  f ield region.
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CHAPTER 2

Macroscopic Properties
of Nuclear Magnetism

The enormous expansion of the basic ideas of the magnetic resonance
technique beyond the molecular beam experiments occurred when it was
learned how to do experiments on macioscopic quantities of magnetic
moments as found in solids and liquids. There is a considerable difference
between flipping an isorated spin from up to down in a molecular beam
experiment and doing,the analogous thing all at once on 1022 spins inpunderable matter. we introduce in this 

"hupt". 
the statistical mechanical

steps necessary to describe macroscopic magnetization and its interaction
with external electromagnetic f ields ano wiitr the materiar in which it isimbedd.ed. The important new idea wil l be the concept of complex
susceptibility, and the practical achievement will be the Bloch .quutionsfor the behavior of nuclear magnetism in l iquids and some discussion ofthe apparatus of nuclear magnetic resonance.

2-1. THE EQUILIBRIUM DISTRIBUTION
chapter I has described the basic technique for producing transitionsbetween mr states of isorated spins. The apprications Jf magneticresonance in chemistry and solid state physics are based on those methods,but they emproy different concepts to produce polarization and to detectthe resonance. In this section we sha[ set forth the basic considerationsthat govern the relative popurations of the different m, levels when alarge number of identical magnetic moments interact with a heat reservoir(usually called a " lattice," even when the moments are in a riquid or agas)' we shall be able to make some very general statements about theway thermal equil ibrium is attained, ano we shall also derive a few of themacroscopic magnetic properties of the sample, such u, it, .ug*tizationand magnetic, or Zeeman, energy.

For convenience, we.discuss nuclear magnetic moments, which can benuclei of atoms in a solid, a l iquid, or u gurl Much of the discussion wil l
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apply also to electron paramagnets, but they have some properties that
present complications requiring rather more specialized äiscussion, for
which we refer the reader to pake [l]. In the beginning, we further
idealize the system of interest by assuming we can neglect the interaction
of the moments with each other. we also make a more significant
approximation that renders irrelevant the " statistics " of the paiticles-
whether Bose-Einstein or Fermi-Dirac-by requiring the deniity of the
system to be low enough to allow the use of Maxwell-Bortzmann siatistics.
As a result, we specifically exclude from consideration in this chapter
conduction electrons in metals or in l iquid .He at low temperatures. Both
systems require the Fermi-Dirac distribution function at low temperatures.
otherwise, for nuclei, the density of ordinary solid matter is easily small
enough to allow the Boltzmann distribution to be valid.
_ 

We start as simply as possible. Consider ,A/ spin ] nuclei i ir a magnetic
fleld r1o, applied in the traditional z direction. The population of the
mr:  XI  s tates are N* and N_,  wi th N* + N_ :  N,  Now the nucle i ,
whether in solid, l iquid, or gas, have translational degrees of freedom_
kinetic and potential energy. calr these degrees of freedom the rattice.
Let the lattice be homogeneous; characterize it by a single constant
temperature r' our only other assumption about the ratti ie is that its
heat capacity is large compared with the magnctic energy of interaction
of the nuclear moments with the magnetic f ield. ror täw temperatures
and high fields' this assumption is, in practice, rather restrictive, and the
theory developed here must be redone to treat that case. Just how low a
temperature and how high a fietd wil l be the subject of a problem.
Figure 2-l shows the energy-level diagram and herps define relevant
quantit ies.

The Zeeman energy of each spin is

If y > 0, the nt, - -+ state is higher in energy. To say anything more,
we must assume that the spin system (i.e., the totality of .|y' spins, each

m t = - )

m r = + ä

Fig. 2-l Energy levels of
are ordered for y > 0.

p :  - y h H o m l (2-t)

"rhHo

a spin I in a magnetic field I1o. Energy levels
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interact ing wi th the f ie ld F/o)  can exchange energy wi th the Iat t icc.  we
need not  speci ly  the mechanism to make general  s tatements about  some
of  i ts  propert ies.  The lat t ice must  be regarded as a quantum rnechanical
system wi th s tates we label  by Greek le t ters e,  ß,  . .  .  The states are to
be thought  of  as s imple harmonic osci l la tor  levels  for  atoms bound rn a
sol id .  The re lat ive occupat ion of  two levels a and B of  energy E,and E,
is  proport ional  to  exp[(E,  -  E,) lkTl .  l t  the la t t ice energy consists  of
the k inet ic  energy of  t ranslat ion in  a gas,  for  example,  then the energres
Eo and Eo refer to the kinetic energy, and the preceding expression is
Bo l t zmann ' s  gene ra l i za t i on  o f  t hc  Maxwc l l  vc loc i t y  < i i s t r i bu t i on .  The
comb ined  sys tem can  bc  l abe led  i n  t c rn rs  o l  pop r r l u t i ons  o f ' t hc  va r i ous
states of  the subsystenrs.  ' l 'hc 

populat i . 's  arc spcci l iec l  by ( , ,V*,  N ;
N " ,  Ne ,  )  S ince  the  comb ined  sys t cn t s .  Zcen ran  p lus  l a t t i ce ,  a re
assumed iso lated f ronr  the rest  o l ' thc universe.  an increase in Zeeman
energy must  be accompanied by an equal  decrease in Iat t ice energy.

Figure 2-2 shows two lat t ice state populat ions that  d i f fer  by the Zeeman

N  - N o

NT

-  1 y ,  _ 1  _  f { o + l

-  ' \ ' . + l  N d  I

s t a t e  (  2 )

(2-2)

-r
TltHs

I

s ta te  (  I  )

Fig. 2-2 Energy levels for system of spin I and a pair of lattice levels with
same energy difference. States ( I ) and (2) of the combined system have the same
energy.

energy hyHo,  and i t  ind icates schemat ica l ly  two populat ions of  the com-
bined system that have the same energy. part (l) has the higher zeeman
energy of the two; (2) has the higher lattice energy. we postulate that
there is a rate process, determined by a transition rate l l, which connects
pairs of states the Zeeman populations of which differ by one spin being
turned over. we write the following equations for the time rate of .hunn"
of  the spin populat ions:

+: -N+w(+- - )+  N-W(- -a1

, l N - : _ d N *

d t  d t

and

(2-3)

N * o  - ( 8 ,  -  E _ )  * y h H n
N:b: 

exp 
kT 

: exP 
kt---:

(2-e)
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since N* * N- : N. Remember that the transition rate W(* - -), for
example,  involves impl ic i t ly  a t ransi t ion f rom (2)  to  ( l )  o f  F ig.2-2,
including the redistribution of lattice-level populations.

The thermal  equi l ibr ium condi t ion is  dN* ldt :0,  f rom which we
conclude that

where the superscr ipts  ind icate thermal  equi l ibr ium. On the other  hand,
the total number of transitions per second of the entire system from (l)
to (2) is given by

trans/sec f rom ( l )  to  (2)  :  N -  Now (2-5)

where n '  rs  a quantum rnechanical  t ransi t ion probabi l i ty  involv ing only
the squares o l '  rnatr ix  e lcments.  c lcnsi t ics r>f  s tates,  and constants.  The
imp' . , r t  o f  thc consi tut ion of -  ' '  is  that  i t  is  nr icroscopical ly  revers ib le;  w
appears in  the equivalent  expression for  the tota l  numbcr of  t ransi t ions
per second f rom (2)  to  (  |  ) :

t rans/sec f rom (2)  to  ( l ) :  N*Nnw (2-6)

In thermal equil ibrium, the quantit ies calculated in (2-5) and (2-6) are
equal, from which we conclude

N r o  W ( -  -  + )

Nl :  t ( +  * )

N * o  N f

N , " -  
:  

N ;

(2-4)

(2-7)

(2-8)

That  is ,  the Zeentan state populat ion rat io  is  the same as the populat ion
ratio of any pair of lattice states separated by the Zeeman energy. This
latter ratio is, except lbr the case of very low temperatures alluded to
earlier.

N,  _ exp(-  EßlkT)  ,  ^-^  
- (Ep -  E")

Nn 
: exP --17-

From Eqs. (2-l), (2-7), and (2-8), and from Fie. Q-2), we have
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That  is ,  the lower energy level  of  the spin system, mr :  *1,  is  more h ighly
occupied in  thermal  equi l ibr ium. Moreover,  f rom Eq.  (2-3)  we get

W( -  -  + )  t hHo
- - : : - :  e. \D -
l t ( +  +  - )  k T

(2- r 0)

(2-n)

(2-t2a)

(2-r2b)

(2-14)

(2- r 5)

(2-16)

Downward t ransi t ions are more probable;  indeed,  you can rook at
Eq.  (2-10)  as prov id ing the mechanism whereby the equi l ibr ium populat ion
ratio (2-9) is produced and maintained.

we may now return to (2-3) and tark about the approach to equil ibrium
from a nonequil ibrium init ial condition. Define the population äiff...n..

n :  N *  -  N _

and rewrite N* and N_ in terms of n and N:

r * :  j (N+n )

N _ :  j ( N _ n )

In terms of y'/ and n, Eq. (2-3) becomes

dn

a t  
:  r t lW( -  -  + ) -  W(+  -  - ) l  _  n fw (+ -  _ )  +  W(_  -  + ) )

(2 - l  3 )

or, by factoring out flV(+ -- -) + W(_ - +)f,

dn

dt
n o - t l

Tl

where

^ ,w(- -+) -w(+- - )x o : / Y '  :  '
W(+ - -) + l lr l-  -,  a;

and

I

7:w(+*- )+w(- -+)I

where no is the equil ibrium population difference, as substitution of (2-10)
and (2-l l) into (2-15) wil l verifv:

l \ 1 . r ,  r  ,  " . ,  . , p i c  P rope r t i eS  O f  Nuc l c l r  N t , r l t r c t  r r l r  . '  :

. . W ( + - '  ) [ c r P 1  , ' / 1  ; 1 . , 4 / ) - l l  . y 1 f i l l , , i, ?o :N : - -  , i :N tanh l f r f  t : - t l t"  W ( f  + - ) [ c x p ( , ' / r / / , , 4 / t r  r r  \ L ^ t  /

The t ime ?"r ,  def ined by (2-16) ,  rs  thc s1 ' r r r r  l i r t l r t 'c  rc l : rxat ion t ime; i t  is  the
t ime constant  of  the approach of  thc sprn \v \ tcnr  to t l rcrnur l  equi l ibr iunr
w i th  t he  l a t t i ce .  l f  ( 2 -14 )  i s  so l ved  w i th  n (o )  ( ) ; r s  t hc  r r r r t i : r l  cond i t i on ,
as would be the case if the field were switchctl on sutlrlcrrlv ut / 0 al 'tcr
having always been zero before, we find that

n : nofl - exp(- tfr)l

l t is appropriate at this point to put in perspective what wc havc beerr
doing, and perhaps even allow a glimpse of a skeleton in a closct.
Equations (2-3), (2-5), and (2-6) are examples of the princlple o./' detailed
balance,  which was f i rs t  used by Einste in in  h is  l9 l6 reder ivat ion of ' the
P lanck  rad ia t i on  f o rmu la .  G i ven  t - -q .  ( 2 -2 ) .  wh i ch  i s  a l so  known : r s  u
mas te r  equo t i on ,  t he  i r r cve rs ib i l i t y  o f ' t hc  app roach  to  ccqu i l r h r run r  i s
a l ready  de te rm ined ,  even  though  (2 -2 )  n rukcs  cxp l r t r t  u r c  o l  t hc  n r r r ' r o -
scopical ly  revers ib le quantum mechanical  t rarrsr t ior r  proh;rhr l r ty  r r ' ,
in t roduced in Eq.  (2-5) .  The just i l icat ion,  or ,  i t 'yot r  ursh.  t lcr r r ' i r t rorr  o l
the master  equat ion is  the centra l  problem of  nonccpr l ibr r r rnr  s t l t rs l r t i r l
mechanics.  Magnet ic  resonance exper iments on nuclcar  sprr r  svstcrr r r  r r r
so l ids and l iqu ids have in recent  years prov ided intercst ing ant l  t r l r . ruhlc
model  systems for  which speci f ic  der ivat ions of  equat ions such us I ,q  t2- .1;
could be tested, and the l imitations understood.

Although it is rather far afield from our main purpose, sonrcthirrg rrrorc
than the preceding mysterious remarks can be made with rcgarrl to tlrc
origin of the irreversibil i ty. In terms of the coefficients a and ä introtirrccrl
in  Chapter  I  for  the spin wave funct ions l f ) :  a l ] )  + ä l  -  l ) ,  i r  is  c lcar
that(2-2) is an equation in lal2 and lö12, since the probabil ity of occupuriorr
of  a g iven stage for  a s ingle spin is  essent ia l ly  ( l /N)  t imes the occup3r io l l
o f  that  s tate in  the ensemble of  N ident ica l  sp ins.  The informar ion rhul
is  miss ing is  the re lat ive phase of  the l ! )  and l - ] )  s tates,  which,  i t 'wc
remember Chapter I , is related to the transverse component ol t lrc
magnetic moment. In equil ibrium there is no transverse macr()sc()prc
magnetic moment, not even a coherent alternating one. From thut, rvc
reason backward to the conclusion that the relative phase of the rr, r i
states from spin to spin must be a random quantity, so that thc totrrl
t ransverse moment vanishes.  The reasoning is  purposely c i rcu lar ,  b t r t  r t
points to the crux of the problem and reintroduces the idea that a nlrcro-
scopic transverse magnetization, such as produced in a magnetic rcs()n.lncc
exper iment ,  has to do wi th a coherent  admixture,  f rom spin to spin,  o l ' rhc
magnetic states m/ .
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2.2. ENERGY, MAGNETIZATION, AND SUSCEPTIBILITY

The magnetic energy, or Z.eeman energy, of the spin system is given for
a general spin 1 by

I

E:  I  E(m)N(m)
ü t  =  -  I

( 2 - 1 8 )

It is convenient to define the zero of energy E(mr) for each spin to be at
mr : O for 1even, and midway between the m,: * j energy levels for 1
an odd hal f - in teger .  Then Eq.  (2- l )  is  the appropr iate expression for
E(m,)  in  Eq.  (2-18) .  For  N(m,) ,  we shal l  s impl i f  y  mat ters a l i t t le  by us ing
an expression that  wi l l  be val id  in  the h igh temperature l imi t  only :
yhHo 4 kT.

Ä r , , . . . \  N ' * ! ! : l ' t ' ' - L I I : l l I )  - .  N  -hvm, l l u
, ' \ , n , )  = f f i )=  

11  aexp  
-  

f r i - "
(2 -  l e )

The f i rs t  equat ion in  expression (2-19)  is ,  o f  course,  exact .  The de-
nominator  is  that  fundamental  expression of  s tat is t ica l  mechanics,  the
"  sum over  s tates,"  or  par t i t ion funct ion.  The replacement  o l  the
denomina to r  by  2 l  +  I  i n  t he  second  equa r i on  i n  (2 -19 ) .  a l t hough  re ta in ing
the fu l l  exponent ia l  expression in  the numerator .  is  eorrvcnt ional  but
inconsistent .  l f  yhHom,lkT < I ,  the exponent ia l  in  the denominator  may
be expanded:

i .*o =#t : er + D -y!:;2 
i^, .:(#)'t^, *

The second term in the sum is zero since I mr : 0, but the next term is
not .  Thus,  the denominator 's  lowest  term in the expansion parameter  is
quadratic, but the numerator's lowest term is l inear. To be consistent,
we must  take two terms of  the numerator  and one of  the denominator .
The exponent in the numerator has been retained at this stage because one
so often is concerned with population ratios, in which case it is somehow
easier always to write

exp(E"i k I) (E" - F.r)

" *p te  u tn :  
exP  

k7  
- -  =  I  -FE , _  E P

K T

,  E " -  E p
- k T

than

itffi=('*#)('-#) ='
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E q u a t i o n ( 2 - 1 9 )  s a t i s f i e s  E q .  ( 2 - 9 ) ,  a g r e e s  w i t h ( 2 - 1 7 ) r r r  t l r c  l t t g l t  t c t t r P t ' t : t l t t t c

t im i t ,  ana sa t is f ies  conserva t ion  o f  sp ins ,  l r - ,  N(nr r )  N .  t r t  t l t r t t  l r r t t r t

a | s o . E x p a n s i o n o f ( 2 - 1 8 ) w i t h ( 2 - 1 9 ) i n t h e h i g h t e m p c r a t u r c l r t t t t t y t c I t | s

_#^,i)
: - -r {11\' f ̂ ,,

2 l + l \ k T l  - t

I t  is  easi ly  ver i f ied that  l r - ,  m,2 :SI1 l  + l ) (2 |+ l ) l /3 '  so that

E = #i*u"^,(t

f , -
Ny2h2t1t  *  l )Hu2 (2 -20)

3k r

As an as ide ,  i t  i s  in te res t rng  to  c ( )n lp i l re  t l rc  l i r r r r rL r l : r  r2 -20)  w i th  thc

c lass ica l  fo rmula  in  thc  sanre  l in l i t :

L  - .  ( p  '  I l , , ) N  , 1 t l / , ,  N ( t o s  l l ;  ( 2 - 2 1 )

w h e r e  (  )  i n d i c a t e s  t h e  t h e r n r a l  l l v c r a l l c  o t ' l l t c  q r t i t t t t t l y  i r r s r t l c  i l '  c r r l t t r l i t t c t l

accord ing  to  Bo l tzmann s ta t i s t i cs .  
' I ' o  f ind  (cos  ( ,1 ) ,  ( )nc  r l l t r s l  wc tSht

cos  0  by ihe  probab i l i t y  tha t  the  montent  7 r  i s . r i cn tc6  r r t  r t r rg lc  ( )  t " t  l l ' ,

f ^

I  cos 0 exp(gHo cos 0/AT) r io
J 6 1

w h e r e t h e i n t e g r a t i o n i s o v e r t h e s o l i d a n g l e t h e c t l m p l c t e r a n g e t l l . w h l c l r
is  the denominator  4n.  Expand the exponent ia l .  The l i rs t  term vanishcs

and the second Yie lds:

I r H o  L l ' ' , / g . o . '  o  s i n  o  : : *
k T  2 J u " "  3  k T

Substituting back into (2-21), we obtain

(cos 0)  :

E :
-  N p 'Ho'

3kr

The quantum mechanical  equivalent  of  p2 is  y 'h2t1t  + l ) "  and the l l rc tor

'Occas iona l l y  one  sees  t he  quan t i t y  l g2 I ( l  t  l ) l ' i ' ]  de f i ned  1o  q " .  t l " .  r r r i l l { I r c r r (

n loment,  rather than 91.  i f t t  io t tnt '  is  moi t  f requent ly found in the ol t ler  l r tcra l t l r t  { r r r

magnet lsm.
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of 3 in the denominator of (2-20) is the quantum average of m,2,just as
it is the average of cos2 0 in the classical calculation. (This equivalence
was known as the "principle of spectroscopic stabil ity" in the early days
of quantum mechanics.)

The magnetic moment per unit volume may be defined by the expression
El V : - Mo . Ho . From (2-20), we see that

'.:#,!iF}r" (2-22)

The same expression is obtained from Mr: no!,1V, where no is given
by the high temperature expansion oi (2-17). The static magnetic
suscept ib i l i ty  1 is  def ined by Mo: .XoHo, so we obta in the wel l -known
formula

(.x)-"* - (x)"r
p

(x)-or", : (t),"r u

where p in (2-24a) is the density, and u in (2-24b) is the molar volume,
u: NtMlp, where N,, is Avogadro's number, and M is the atomic mass.

2-3. RESPONSE TO AN ALTERNATING FIELD:
COMPLEX SUSCEPTIBILITI ES

In the Rabi magnetic resonance experiment, isolated spins interacted
only with the static and alternating fields. Earlier in this chapter we
introduced the concept of spin-lattice interaction. we now need to

(2-23)

A word about units is in order. In the Gaussian system, which is sti l l
largely used in research physics even though it is no longer the system of
choice in elementary courses, the dimensions of M, B, and ll are the same.
Hence, 1o, from the defining expression, is dimensionless. As defined here,
it is often referred to as the uolume susceptibil i t.t ' , however, to distinguish
it from mass or molar susceptibil i t ies. These quantit ies arise l 'rom a
definit ion of Mo in which the number of moments contributing is not the
number in cubic centimeters, asin(2-22), but the number in a gram or the
number in a mole. with such a definit ion, since Mo and .Flo must sti l l
have the same dimensions, the quantity xo is not necessarily dimensionless.
The mass and molar susceptibil i t ies are related to the volume (i.e.. dimen-
sionless) susceptibility by

(2-24a)

(2-24b)
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combine them all and discuss, as we did before, the components of the
magnetic moment in the presence of these interactions. Now, however,
the magnetic moment to consider is the macroscopic magnetic moment of
the entire sample. We shall begin by discussing the z component, followed
by the transverse components M, and M,.

There is a subtle difference between the effect of the rf f ield on the isolated
atom in Eq. (l-22) and its effect in the presence of spin-lattice interaction.
The or ig in of  the d is t inct ion l ies in  the fact  that  wi th spin- la t t ice in ter-
act ion the states mr ^re not  qui te e igenstates of  the tota l  Hami l tonian.
When one speaks of the states in the approximate language of m,, one
must then absorb the approximate nature of the description into a lack of
sharpness of the energy level, and one speaks of the level as having a
breadth given, in fact, by the uncertainty principle argument LE > hlTt.
In discussing M in the presence of the rf f ield, we are particularly interested
in small deviations of M from Mo . The rf f ield is regarded as a perturba-
t ion that ,  in  the language of  Chapter  l ,  is  to  produce only a smal l  ampl i tude
ä in a state which in i t ia l ly  had la l '  :  l .  Thus,  in  Eq.  ( l -22) ,  P(r )  (  I  in
the  pe r tu rba t i on  t hco ry  l im i t ,  i f  l o l t  - -  I  i s  t o  con t i nue  to  be  t rue .  P ( - ] )
is  smal l  for  smal l  t imes /  a l ter  the per turbat ion is  turned on.  and one sees
immed ia te l y  t ha t  P ( -11=  12  fo r  i n te rva l s  o f  I  such  tha t  P ( - l )  <  t .
For tunate ly  for  the preservat ion of  a l inear  theory,  the quadrat ic  de-
perrdence on / is not correct for the problem with which we are now
concerned, and the correct t ime'dependence for the probabil ity of the
mr:  - I  s tate being occupied is  a l inear  rather  than a quadrat ic  one.  The
apparent  paradox is  resolved by not ing that  P(- ] )  was computed for
exact eigenstates nr, : + ], whereas these are not exact eigenstates in the
presence of  sp in- la t t ice re laxat ion.  The f ina l  resul t  must  involve an In-
tegrat ion over  a l l  the states making up the "  level  "  o f  nonzero width.
The details are carried out in Abragam's treatisc Nut' lear Magnetism l2l
(see Chapter 2).

The probabil ity of a transition from the state rrl, to the state m, - | t 's
proport ional  to  t ime.  Unl ike the case of  sp in- la t t ice re laxat ion,  however,
the transition rate for a spin in state mt - | to rrl is the same as the
transition rate for a spin in state lrr lo mr - l. The processes are to be
contrasted: the spin-lattice relaxation process drives the population differ-
ence n toward the thermal  equi l ibr ium value n6; the r f  f ie ld dr ives n toward
zero. The latter statement is easily verif ied:

l d N -  r
l - l  :  - N ,  W , t  *  N  - W , r :  - n W , r
\  t t t  / , t

and
l d N  - \  / d N .  \
l - ' ,  

-  
I  :  -  l - '  , : -  I\  d t  t t  \  d t  / , r
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Hence,

(2-2s)

Equi l ibr ium occurs when n :  0 ,  Q.E.D.  The t ransi t ion probabi l i ty  per
unit t ime W,, is properly computed by the standard time dependent
perturbation formula (the so-called " golden rule ") of quantum mechanics.
The perturbation is the interaction of the magnetic moment and the rf
f ie ld,  -p.  H, ;we need remark here only that  Vl / , ,  is  proport ional to H12.

The total rate of change of n is the sum of (2-14) and (2-25)

(#) ,,: 
-2w,,n

4 ! :  - 2w . ,n+ ! : - u
l t " T l

In the steady state dnfdt: 0, and (2-26) shows that

(2-26)

(2-27)

(2-28)

(2-29a)

(2-2eb)

Equations (2-26) and (2-27) may be rewritten in terms of M,: nyhl2
s imply by subst i tu t inE M, for  r  and Mo for  no.  Equat ion (2-27)  shows
that the rf f ield does not appreciably disturb M, from Mo as long as
zw , rT r  <1 .  When  th i s  i nequa l i t y  i s  no t  sa t i s f i cd ,  n  <  n . ,  and  the
resonance is said to be saturated. Additionally, the rate of energy
absorption from the rf f ield may be calculated l iom (2-26),

|  + zW-,Tl

M, :2x . 'Hr

Mr :2x"Ht

{ :  l t .nw-,  -  nohow'r

d t  "  1 + 2 W n T l

Note that dEldt becomes independent of W,, as W6 exceeds j?"r.2
The discussion of the transverse components of M in the steady state

situation must be phrased in rather general terms. It is again convenient
to work in the frame rotating with the rf field, angular frequency ro.
Let H, be along the x axis in the rotating frame. Define susceptibil i t ies
1' and 1" by the relations

Equations (2-29) are, f irst of all, l inear. That is, the transverse magnetiza-
tion is proportional to the first power of the perturbing rf f ield Hr. Note
that x' has been defined to be the proportionality factor between H, and

2 The failur"e of the first attempts to observe nuclear magnetic resonance in solids,
by c. J. corter in the late 1930's, can be traced to the use öf a sampte with a r, tnatp'obably was several hours, so that 2w,rTt was undoubtedly very laige and the power
absorbed f rom the r f  f ie ld by the sample was very smal l .
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the component of M parallel to, or in phase with, 11, in the rotating frame.
The out-of-phase or orthogonal component is determined by X'.

Necessary additional insight is obtained by transforming bdck to the
laboratory frame, X, Y, Z: z, where we assume that the rotating.Ef, is
produced by a l inearly polarized rf f ield in the X direction:

H,(t) : 2H, cos at

In the laboratory frame, then, the X component of the magnetization is,
from Eq. (2-29),

Mr(t) : (X' cos @t + X' sin cot)2H, (2-30)

Equation (2-30) may be expressed more compactly, and more convention-
ally, as the real part of a complex quantity. We define the complex
quantit ies ffx:2Hfi 't and i lx:zXHGt-t. Their real parts are the
physical f ield and magnetization, respectively. Comparison with Eq.
(2-30) shows that M, : Re "// x only if 1 is the complex quantity

x :  x '  -  i x ' (2-3r)

The linear relation between the complex driving term -/f xe) and the com-
plex response function .// r(t) has many familiar parallels in physics.
Probably the first one encountered by most students is the generalized
Ohm's law from ac circuit theory, {:-f t, where lt isthe complex
impedance. The same care must be used in calculating quantities with
complex '// and t(, as with complex current, impedance, and voltage.
Thus the instantaneous power absorbed from a generator is (R e ,//) (Re /f),
not Re(J/lf ).

The average power absorbed by a unit volume of material is

,:+!,*"* ""(#)0, (2-32)

where r :2nla is an rf period. The only term in the scalar product in
the integrand is the X component, so

P : 
+ f"rrn rr' cos or(-rox' sin cr.rr * ax" cos .llt) dt

: 4 H t '-x" (2-33)3'-r"(+J'.or' at at) :2H r

3comparison,with Eq. (2-28) would allow immediate determination of y, if r/,1
were known. we shall not pursue that course, since we shall eventually get ntir,for theparticular situation (2-28) represents (lifetime broadened levels) withoui ising luantummechanical perturbation theory. see the discussion at the end of section 2-5.'
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The analogy between the impedance and r cannot be made blindlv. The
real part of I determines the loss, and the imaginary part determines the
nature of the periodic but lossless exchange of energy between the circuit
and the generator. The terms "real" and "imaginary" must be inter-
changed in the preceding discussion because the voltages that interact
with currents in the magnetic system are induced; they are determined by
d'/lldt: ia'//. The phenomenon of induction accounts for the factor
of ar in (2-33) and the appearance of x" instead of x' in the expression
for the absorbed power.

without further assumptions about the details of the system, except for
the all-important one that the " cause must precede the effect," one can
establish that y' and 7' are not independent of each other but are related
by integral relations known as the Kramers-Kronig relations, which were
independently derived with reference to optical absorption by Kramers and
Kronig in 1926. A thorough discussion and derivation of these relations
may be found in the text by Slichter [3], in which there is a precise mathe-
matical formulation of the somewhat enigmatic statement made previously
about cause and effect. Relations such as those of Kramers and Kronig
exist between the real and imaginary parts of the complex linear response
functions of physical systems, whether they be magnetic or electric suscep-
tibilities, impedances of passive electrical circuits, or reactions in elemen-
tary particle physics.

2-4. THE BLOCH EQUATTONS

Nuclear magnetic resonance in condensed material (namely, hydro-
genous materials such as wat€r or paraffin wax) was first observed in 1946
independently by Professor Felix Bloch and coworkers at Stanford. and
Professor E. M. Purcell and coworkers at Harvard.a In conjunction with
the experiments at Stanford, Bloch proposed phenomenological equations
of motion for the macroscopic magnetization vector M, which ,"ir" u".y
well to describe magnetic resonance experiments in liquids, gases, or
" liquidlike " solids. It will be one of the tasks of this boot to enable the
student to comprehend in physical terms the limitations of the Bloch
equations, but first we must set them down and explore their solutions.

The object is to express the interaction of the magnetization 'ith the
external fields (static and alternating), with the lattice, and to write a term
that expresses the interaction of the magnetic moments with each other and
with other internal magnetic fields in the sample. we have already
accomplished the first two tasks, and we have a major portion of the Bloch

'Bloch and Purcell shared the 1952 Nobel prize for their work, the third Nobelprize awarded for work described in this book. Stern won the prize for his molecular
beam work in 1943, and Rabi for the magnetic resonance method in l9zr4.
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equations if we assemble Eqs. (l-l l) and (2-26) in slightly altered and

compatible form. The effect of the interaction of the moments under-

going resonance with each other and other magnetic momedts in the

iample, via the dipole-dipole interaction or through more esoteric quantum

mechanical effects called exchange interactions, is contained within the

Bloch equations by a single parameter that affects only the transverse

magnetization, the components of which are M, and Mr' (We shall use

lowircase subscripts for the laboratory coordinate system in this section,

and identify equations written in the rotating system explicitly')

Bloch assumed that the internal interactions of spins with each other

could be expressed by the equation

1Mx,y  _  _M' , ,
0t T2

(a) (b)

Fig. 2.3 Rotating frame view of decay of M,
Partial decay (t - T). (c) Total decay (l ) G).

(2-34)

Equation (2-34) defines the parameter Tr, known variously as the trans-

u"rr" o, spin-spin relaxation time. (The partial derivative has been written

only to call particular attention to the existence of the other terms that

catse M,,, to change.) Equation (2-34) is the equation for a magnetiza-

tion that ä".uyr exponentially to zero. Suppose that in the rotating frame

at aro : 7i1o the transverse component M, is created at t : 0' In the

context of Chapter I it persisted indefinitely. What can cause it to decay ?

One obvious cause would be an inhomogeneous magnetic field across the

sample so distributed that the Larmor frequencies of the spins in the various

parts of the sample differ sufficiently so that in time 12 they would get out

äf phu." with each other enough to diminish the init ial M,to l/e of its

value. Although it would take special field inhomogeneity to make the

magnetization decay exactly exponentially, the point is worth illustrating

with a figure. Figure 2-3 shows M,(O), in the rotating frame' Imagine

M,(0)

(c)

(a) Initial condition.

Mr(Tz)

(b)
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M * made up of small magnetization vectors that precess at a variety of

frequencies differing by small amounts either way from the average

frequency <rro . Then in a frame rotating at 0)6, they precess one way or

the other unti l by t : Tz, their vector sum is sti l l  in the x direction but has

dimin ished to M,(Ol le.
One internal physical process that diminishes the transverse magnetiza-

tion is the spin-lattice relaxation time Z1 . Any other process, such as field

inhomogeneity, only adds to the rate at which M'., diminishes, so that

T, < Tr. The most interesting Ir process is the interaction of each spin

with internal f ields. By analogy with the external f ield inhomogeneity

mechanism, we should guess that the internal helds that act to dephase

M,,rare those par ts  of  the tota l  in ternal  f ie lds which are in  the z d i rect ion

and which are stat ic  and quasistat ic .  That  the in ternal  f ie lds should

mani fest  themselves just  as s ingle parameler  T,  in  an equat ion of  the form

of Eq. (2-34) is, in fact, a result of rather special circumstances which we

shall explore later.
Combining Eq. (24q with the torque and relaxation equations, we get

the Bloch equat ions:

where
r t : k F 1 0 + l H r ( r )

2-5. SOLUTIOI.JS OF THE BLOCH EQUATIONS

Solutions of Eqs. (2-35) are not difficult to obtain for a few special
experimental conditions that are also of particular interest in practice.

We have actually already discussed, in two separate parts, one particularly

lnteresting solution that we can do without mathematics; thus we begin
with that example.

Free induction decay

In making the plausibil i ty argument for the form of the Trterm, we began
arbitrari ly with the magnetization in the x direction in the rotating frame.
The subsequent exponential decay with time constant ?", , determined by
Eq. (24\, appears in the laboratory frame as

d M "  M o - M "  ,  ^

" :T  
+7(MxH) '

{ .  :  _++ } (M x H), , ,
tlt T2

M - ( t ) : M , o c o s a ) o r c  
- r

'xp 
T,

(2-35a)

(2-3sb)

(2-36)
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We have two problems: how to produce M"(0) and how to detect M,(t).
Producing M,(O) may be accomplished by a "90" pulse," a transverse rf
pulse of magnitude 11, in the rotating frame at @o : lHo, which acts for a
time r such that yHrr : nl2. From Chapter I we see that if 11, is station-
ary in the y direction in the rotating frame, M, : M o precesse s about ,F1,
atyHt: arr unti l, at t: nl2yHr, it is pointing in the -x direction. The
experimental arrangement to do this is shown in Fig. 2-4. We have
neglected one thing of great importance. The pulsed rf field that pro-
duces the 90' rotation of M o in the rotating frame must act in the presence
of Zt and I, processes, rather than in their absence, as in Chapter l.
Consequently, the 90" nutation of Mo is only an approximate description
of what happens, and we must find how good an approximation it is. If
the major torque on the magnetization is to be from I/, during 0 < / < r,
then the relaxation toward äo (in time ?"r) and the dephasing of the
transverse magnetization (in time Zr) must not be important compared to
the precession about 11, during r: r ( Tr<Tr. The requirement on 11,
is thus (nl2yHr) ( ?"2 , or

fr

l H r )  n
L r 2

(2-37)

It is the same result we get if we assume, plausibly, that I/, must be much
larger than the internal fields or external field inhomogeneities described
by  Tz .

A word is in order about the magnitudes involved for a nuclear resonance
experiment. The largest internal fields in ordinary substances (think of
NaCl, for example) are caused by the nuclear magnetic dipole-dipole
interaction. The magnetic field produced by one dipole a distance r from
another is on the order of p/r3. Typically, since p - yh: l0-23 ergs/G,
a n d  r - 2 x  l 0 - 8  c m ,  A F l : p l r i  = 1 9 - z r 7 3 x  l 0 - 2 a . : l  G .  A l t h o u g h
the Bloch equations are not, in fact, generally valid for solids, they do
provide a framework for rapid estimates of upper or lower limits. To
sat is fyour inequal i t ies,  11,  Z l0Gisrequired,and r  < n l (2 x  l0a x l0)  r :
l0 psec. The Z, for this case is about Z, - l ly L,H: 100 lsec. These
calculations provide upper limits on fields and lower limits on times for
this particular substance, because, as we shall see in the next chapter, the
effect of the nuclear motion that occurs in a liquid or gas is to decrease the
effective dipole-dipole interaction for ?", processes, often by several orders
of magnitude.

How large is the induced signal ? The precessing magnetization in the
xy plane in the laboratory frame is of init ial magnitude Mo: ysHs,
where 1o is the static susceptibility, Eq. (2-23). Referring to Fig. 2-4,let
the coil that produced the 90'pulse of11, serve also to pick up the induced
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(a) field geometry
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Flg. 24 Schematized apparatus for observing nuclear free induction decay.
(a) Field geometry. (b) Electronics. (c) Rotating frame field and magnetization

A
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(b) electronics

Mo( t  =  0 )
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signal caused by the rotating magnetization immediately after the 90"
pulse. If the coil is of unit volume, cross-section area A, and has n turns,
then the induced voltage will be

Y o :  - n d Ö

c ' d t
- !  utrn# :  - !  qxnn,qa*to (2-38)

where {  is  the f lux l ink ing the coi l :  ö  :  B l ,  and I  :4nM, and 4 is  a
factor between zero and one, the " f i l l ing factor," which takes into account
incomplete flux l inkage between sample and coil. A problem at the end
of the chapter will show that the magnitude of V can be as large as several
mill ivolts for nuclear systems if the coil is part of a resonant circuit of
reasonable Q.5 Several millivolts is, of course, a very easily detectable
signal at radio frequencies.

Equation (2-38) gives the signal Zo immediately after the 90' pulse,
where the full equil ibrium magnetization Mo is turned over into the
transverse plane. The transverse magnetization, as we have seen, decays
exponentially with a time constant Ir. Since 7", \ 2nlao, the signal is
contained within a slowly varying envelope. The envelope decays
according to the expression Zo exp(-l/?"r), which is known as the "free
induction decay."

Steady stote solution
The next type of solution of the Bloch equations to investigate is the

steady state solution in the presence of continuous l/,. We shall express
the solutions of (2-35) in terms of the susceptibil i t ies 1'(o-l) and 1"(ro). To
begin, we rewrite Eqs. (2-35) in component fornr in the rotating frame of
the rf f ield, which, in the laboratory frame, is

H,( t )  -  l2 I I ,  c . ts  < , t t

The transformation is delincd by aer =
rotat ing component ,  as in  ( 'haptcr  l .

,,rL. Wc ignore the counter-

dM,

d t

dl ' r t - .

i :  
- Y M , I I , , M r - M ,- r ,

-') - Y,;

(2-39a)

(2-3eb)

-  M'  (2-39c1
T2

_ y,v,(rr,

+: -rl*,u, - u.(tr, ;)]
5 The resul ts of  Eq.  (2-38) wi l l  be in thc ( iaussr; rn uni ts,  where I /  is  expressed in

statvol ts.  The resul t  must  be mul t ip l icd by Jü) to cxprcss the resul ts in vol ts.
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In the steady state, the left-hand sides of Eqs. (2-39) vanish. From
Eq. (2-39a) we see that (M o - M 

") 
is proportional to M 

" 
H t. We expect,

from the definit ions of the susceptibil i t ies X' and y", that Mrwill be pro-
portional to Hr, so (Mo * M":) is of the order Hr2. As long as we restrict
ourselves to terms l inear  in  Hr,we can replace M,by Mo in Eqs.  (2-39b)
and (2-39c).

The a lgebra is  s impl i f ied by in t roducing . , / / * :  M,+ iM, .  Add
(2-3gb) to r/ -l : i times (2-39c):

diln

, l t  
:  - ' / /  -

The steady state solution to

f ll - +
l T .

,r("" - ?)l*  iyMoH, (2-40)

Eq.  (2-40)  is

uy'y'* -
iyMo H ,

t lTz  +  i y (Ho -  u ly )

W e  d e f i n e  @ o : l H o ,  s u b s t i t u t e  M o : X o - F 1 0 ,  a n d  t h e n
real and imaginary parts to get

(2-41)

separate rnto

(2-42a)M,: xoul,r, fi]_ffi- tr,

M ,  :  X o a o T z  j * (ar - oo) T2
H |  \2-42b)

From the definit ions of X' and X", Eq.(2-30), we identify the components
of the complex susceptibil i ty:

(2-43a)

(2-43b)

7,:xo@;rz i##ü

,,, _Xo@_oTz =___l__
2  |  * (a r_  ao )2T22

In Fig. 2-5, X' and y" are plotted versus (roo - a)Tr.

- 
The components of the complex susceptibil i t ies have some interesting

features.  The fu l l  width at  hal f -maximum of  the absorpt ion x, ,  is  21 '2,
and the peaks of  the d ispers ion X,  are at  o:  an t  l lTr .  Equat ions
(2'43) are called Lorentz curves, after the rine shape ofthe opticat ausorp-
tion and emission predicted by Lorentz using a damped simpte harmonic

Macroscopic Properties of Nuclear Magnetism 4r

Fig. 2-5 The rf susceptibilities X' and y" as a function of radio frequency c,-'.
The vertical scale is in units of 1o c,ro Tzl2; the horizontal axis is in units of l/Tz .

oscillator model of the atom. The power of the resonance technique is

il lustrated by the observation that the maximum value of 7", XoaoTrf2,
may be wr i t ten X, ,HnlLH, where Af f  :2 lyTz is  the fu l l  width of  X"  in

field units. In l iquids, ?", can be on the order of seconds, and hence the

factor oro Trl2 or ttolLH can be as high as l0E. Thus, although 1o might

eas i l y  be  l 0 - r r ,  and  hence  the  s ta t i c  magne t i za t i on  XoHo :  l 0 -?  G ,  t he

dynamic susceptibil i ty at resonance may be l0 a. Of course, the probing

field Il, is necessarily small (to be discussed), but the magnetization is at
roo rather than zero frequency, so the relatively simple techniques of rf
signal amplification and detection are used.

Had we not neglected the differcnce between Ms and M" in F'q. (2-39c),

the algebra leading to Eq. (2-43) would have been more complicated, but
far from intractable. The result would have been to add the term
yt Hr'TrT, to the denominator of Eqs. (2-43a) and (2-43b), so that (2-43b),

for example, would read

X o @ o T z
x :  z  l + ( @ - . , r o )

(2-44)
TtT,H rT2 + y

The term 5: y2HrzT,?", is called the saturation factor. Regarded as a
function of S, the absorbed power, 2Hr22q'as, is a maximum when S: l.
For S) l, X" tends to zero; the resonance is said to be saturated.

The solution for M" including saturation is also interesting:

M " : X o H o
l + T r 2 ( c r . o -  c o ) 2 (2-4s)

|  +  T r z ( a o -  ( D ) ' + y ' H r ' T r T ,

It is worth displaying (and worth the student's t ime obtaining), because it
can be used with previous general remarks to calculate l/,1 .



42 Introduction to Magnetic Resonance

Recall F,q. (2-27) for the excess population n:

n :  
f r o

| + 2W,rTl

Using no yh : 27o Hs, and M, : lnyh, we equate
obtain

(2-27)

(2-27) and (2-45) to

**::G##?s (2-46)

Note the rapid diminution of the transition probability as the rf frequency
or differs from a;o. Of more interest is W* at @:@o. To generalize
as much as possible, we must consider the l ine shape for an absorption
experiment. It is, of course, X", but we wish to express that shape as a
function of v : al2n, g(v), which is normalized to unity:

f *so)dv: r

The correct 9(v) for 
" 

ror"o,, ttin. l,

2T,
s Q ) :

Value of 9(v) is 2712 at y : yo. Returning to Eq. (2-46), we then can
substitute for I, the quantity Ig(vJ, and we get, for v: vo,

l l 'u: lyzHrzg(vo) (2-47)

This formula is, in fact, the quanturn mechanical result (the .. golden
rule ") for the transition probability of a spin I system, where the quantity
g(vo) is the " density of final states," which explicitly expresses the width
of the level via the shape and normalization. The quantity y2Hr2 14 is
obtained from the square of the matrix element of the perturbation - p, Hr
between the initial and final states:

lGlyHJ,l - +>l'

Finally, to complete our earlier discussions, we can equate (2-33),
P :2Ht2X"a,  and (2-28) ,  P :  f loh<ol f t6 l l l  +  2W,tZ, l ,  and solve for  1" ,
which turns out to be (2-M). we conclude that the Bloch equations are
consistent with our general discussions about energy absorption based on
detailed balancing.
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2-6. SOME EXPERIMENTAL CONSIDERATIONS

A great variety of experimental arrangements to observe nuclear mag-
netic resonance have been successfully used. Descriptions of some of the
earlier ones are in the book by Andrew [4]. Although Andrew's book is
old, most of the basic techniques sti l l  in use are described there. We want
to analyze the experimental problem in a general way to establish the
understanding with which the student can investigate on his own any
particular circuit he may wish. Although our discussion wil l be couched
in the language of radio frequencies---coils and capacitors are prominent-

rather than microwave frequencies where resonant cavities are usually
used, the analysis is really sufficiently general to apply to the microwave
case also.

Q-meter detection

Consider a coil the inductance of which in the absence of a sample is l,o .
lf a sample of permeabil ity 4 occupies all space threaded by the magnetic
lines of force generated by a current through the coil, then the inductance
of the coil becomes

L:  FLo:  ( l  +  4t rX)L1) (2-48)

If the sample does not f i l l  all space, the susceptibil i ty X must be multiplied
by the fi l l ing factor 4, as in Eq. (2-38). The quantity 1 in Eq. (2-48) is the
complex susceptibil i ty defined in (2-31). Since no coil exists without
resistance, unless it is made of superconducting wire, we must really always
specify the coil 's resistance Äo as part of the coil. Our problem is to
calculate the coil impedance t t: Ro + i@9. Since l/ is complex, icr.rJf
has 4 real  par t  (assume 4:  l ) :

t,. -- Ro + ico[l + 4n(7' - iX"))Lo

Ro + 4naLoX" + iU *  4nX' laL6

To design an experimental method of detecting 7' and X", we must know
their size relative to other terms in Eq. (2-a9). Let us use, for numerical
purposes, a fairly typical sample having a resonant frequency of l0 MHz
in lOa G, and wi th a stat ic  suscept ib i l i ty ,  )6 of  l0- t r ;  Tr :  Tz:  l0- r  sec.
Then 421 has a maximum value of l0-7. A coil of wire that is useful at
l0 MHz has an inductance of, say, a nricrohenry, so otLo=60 O, and a
reasonable Ro would be I O. Therefore, the reactive (imaginary) part of
t t changes by one part in 107 as we go through resonance, and thc
resistive part changes by the fractional amount 4taL6X" lRo : l0- r. (lt
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is convenient to identify the ratio aLolRo: Q as the "quality factor."

See a text on ac circuits if you are unfamiliar with the definit ions and

uses of this parameter in resonant circuits.) We conclude that a necessary

feature of any circuit design is that it be particularly sensitive to small

changes in the real or imaginary part of 9'r-

With few exceptions, the coil L is used in a resonant circuit by placing a

capacity C6 in parallel with L such that the Larmor frequency, 7H6, is the

same as the resonant frequency ,,oo: l l(LoCo)tt ' '  The simplest con-

ceivable circuit for observing a nuclear resonance is the so-called " Q-
meter" circuit, shown in Fig.2-6. The oscil lator and large resistor Ä

Fig.2-6 Block diagram of Q-nleter nuclear nlagnetic resonance detector.

form a constant  current  generator  of  current  / , , .  The paral le l  resonant

circuit, tuned to cDo, presents an impedance that, at resonance, is real:

Zo:  Qa6Ls.  The vol tage across t t ,  Vo:  IoZo,  is  ampl i f ied,  and i ts

magnitude is detected by the peak-reading voltmeter. From Eq' (2-49),

we see that as we go through resonance by changing äe, for example, the
real part of I changes fractionally by the amount 4nX" Q, so that the
voltage at the amplif ier input changes by

A,.1. : Io4n/'Q2aLo

or by the fractional amount

y : I o 4!x_Q2_aLo : 4nx,, e
Vo IyQaLo

(2-4e)

We shall now give a word of explanation as to why we were able to
ignore the change in reactance of the resonant circuit. For future uses it
is best explained with a diagram, rather than analytically. Figure 2-7 is a
complex plane diagram, sometimes called a "phasor" diagram, in which
the magnitude and phase of the off resonance voltage across the sample is

r f  -  level
me  t e r
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l < o  -  o o l =  l l T z

Fig. 2-7 Magnitude and relative phase diagram for voltages in Q-meter
detection.

g iven by Vo, the "s ignal  "  vo l tage by L7 ' ,  and the tota l  vo l tage by Vs *
L'l ' , the magnitude of which is detected by the peak-reading voltmeter.
The complex signal Ay'' is given by

L{ : -Vs(4n7' * i{ny')Q (2-50)

Reference to Eq. (2-50) and Fig. 2-7 shows that only the component of
L{ in phase with Zo is effective in determining the length of Vo + Llr.
Since Zo is real, because Zo : Qoolo is real, the Q-meter circuit detects
only y"  to  f i rs t  order .  The imaginary component ,  -  iVt )  Q4nX' ,  is  sa id to
be in quadrature and af fects the length only to second order  in  X ' .

The analys is  of  the "ser ies-paral le l  "  resonant  c i rcu i t  o f  F ig.  2-8a is

( a )  ( b )

Fig. 2-E (a) Series'parallel tank circuit. (b) Equivalent parallel circuit.

algebraically clumsy. Equation (2-50) is an approximation not only to
first order in 1, but also to the extent that <r.rs : l l(LoCo)t/ ' is the resonant
frequency only in the approximation Q ) l. It is more convenient to
analyze ttre admittance a./ of the equivalent parallel circuit, Fig. 2-8b.
The fictit ious resistance R, is related to R", in the high p approximation,
by Q:  aLl  R":  RploL.  Then i t  is  easy to show that  0! :  l /Rp( l  +
4nxQ), and, by virtue of the smallness of 1, g : l lg:.,Rp(l - 4"xQ),
when <o6 : l l(LoCo)'/t-hen.e Eq. (2-50).

The discussion of the " O-meter " detector. so named because the
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detected voltage is proportional to the change in Q ofthe circuit, hence to

X", was phrased to make it clear that the working of the circuit depends on
the selection of the component of the signal in phase with a much larger
voltage, in this case Yo. A clear grasp of this concept is necessary to
appreciate the operation of bridges in magnetic resonance detection.

Figure 2-7 and the subsequent discussion make the point that the

Q-meter circuit picks out X" because Vo and  nQX'Vo: Re(Ä/') are in
phase. A large number of bridge circuits have been devised to accomplish
this purpose, both in the microwave and rf regions. The archetype of the
rf phase reference or coherent detection technique can be summarized in
the block diagram of Fig. 2-9. In the discussion, it is understood that in

Flg. 2-9 Schematic archetypical bridge circuit.

the output of the oscillator Vo et'', the ei't is suppressed. We assume Zo
is real for simplicity. The "bridge" is a device which, when balanced,
has zero output, and which is unbalanced by the change in sample circuit
impedance on resonance. The only output is the signal voltage L,7'.
The phase shifter in Fig. 2-9 shifts the phase of the oscillator voltage by @
and supplies a reference signal to the adder, whose output is Voeio + L7/.
The detector is just the "peak-reading voltmeter" as before, and the
amplitude lVoe'Ö + L{l is, to first order in A"y' ', just Zo plus the component
of L{ in phase with the reference signal. One may write down the result
more easily by pretending we shifted the phase of Ll. by (-@) instead
of the phase of Vo by ( + d) and by computing the real part of A,{ e- io :

R:e(L{e-'01 : 4rVo QX" cos $ - 4nVo Qx' sin $ (2-5 l )

Choosing d : 0 with the phase shifter gives X", ö :90'chooses X', and, as
advertised, any admixture may be chosen as well.

/oe io  +  AV

l Voe io  +  AY I

Vol  phase I  Voei ,
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In real experimental arrangements, the functions of two or more of the
separate components of Fig. 2-9 are usually combined into one device.
If a real rf bridge is used in place of the box marked " bridge " in Fig. 2-9,
it may be balanced by dividing Voand sending half of it through an arm, after
which it recombines with the half that went through the signal arm with,
of course, equal amplitude and opposite phase. If the bridge is operated
in this fashion, completely balanced (off resonance, anyway), then the
reference part of Fig. 2-9 is needed. Often, the bridge is unbalanced
either in amplitude or phase (or a combination. of the two), so that the
steady unbalance signal is much larger than the signal. Then the external
reference channel in Fig. 2-9 is unnecessary, and the unbalanced bridge
has also performed the function of the adder. On the other hand, if the
bridge is balanced, the "adder" and detector may be combined, as is
often done in modern instrumentation, by using a device called a " mixer,"
which takes two signals applied to two inputs and puts out of the third port
the sum and difference frequencies. ln our case, the difference frequency
i s  ze ro ,  and  i t s  magn i tude  i s  g i ven  by  Eq . (2 -51 ) .

Every statement previc.rusly made for rf techniques (frequencies up to, say,
100 MHz) has i ts  equivalent  in  microwave techniques.  The tuned LRC
circuit is replaced by a resonant cavity, which has a " Q" and to which
the language of impedances, voltages, and currents may also be applied.
Mic;owave bridges are in many ways easier to understand than the older
rf ciruuits, and in recent years there has become available an rf version of the
time-honored component of the microwave bridge, the hybrid junction or
" magic tee." It is now possible to make a nuclear resonance spectro-
meter that is an exact copy of the microwave equivalent, even to the
extent of the language used to describe it.

All the original nuclear resonance by the Harvard and Stanford groups
used bridge techniques. The Stanford group lead by Bloch used a device,
the crossed coil spectronreter, which is perhaps the instrument of choice if
space around the sample permits. A sketch of the essentials of the arrange-
ment is shown in Fig. 2-10. Unlike other methods the bridge balance is
achieved by geometry. The field 11, is applied in the y direction in the
laboratory by the split coil called the transmitter coil, and the signal is
induced in the orthogonal coil, the receiver coil, in the x direction of the
laboratory frame. Remember that the induced magnetization rotates in
the x-y plane; thus either coil sees a magnetization varying at frequency <r.r.
The bridge is balanced because, in principle, the l ines of f lux from the
transmitter do not l ink any receiver coil turns. The unbalance is achieved
by the natural lack of complete orthogonality, and control of the unbalance
can also be achieved by mechanical means with " paddles," devices that
" steer" the flux by mcans of currents induced in them by the field. Since
the balance is achieved mechanically, it is somewhat broad band, and the
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Fig.  2-10 Crossed coi l  geonretry :  7 '  is  the spl i t  t ra .snr i t tcr  co i l  and ,R the
receiver  coi l  conta in ing the san-rp le i  Hu is  appl ied pcrpencl icu lar  to  the page.
Not shown are flux steering arrangenrents (paddles).

resonant frequencies of the transmitter and receiver can be swept syn-
chronously i f  necessary.  one can a lso balance as wel l  as possib le mech-
anically and achieve the rest of the balance and the reference through an
electronic phase shifter, as in Fig. 2-9. There has even been a microwave
version of the crossed coil spectrometer, with two resonant cavities coupled
by the sample.

one somewhat  academic d i f fercnce exis t .s  betw,cc '  what  is  measured by
the crcssed coi l  apparatus and the others we havc d iscusset l .  St r ic t ly
speaking,  the complex suscept ib i l i ty  1 is  a tensor  rather  than a scalar
quant i ty ,  and the s ingle coi l  measures the response M,to a f ie ld appl ied in
the x direction: we should write M, : x,, Hr,. The ,:rossed coil apparatus
measures x,r, srnce the receiver coil is in the x direction and the transmitter
coi l  is  in  the y d i rect ion M,:  x ,yHty.  There is  no case in pure nuclear
magnetic resonance in which the distinction is important, since the pre-
cessing magnetization is circularly polarized. In the case of pure qua-
drupole resonance (see Chapter 4), the magnetization is actualiy l inearly
polar ized,  and X,r :0; the crossed coi l  technique does not  work!

Marginal oscillators
Bridge and Q-meter  c i rcu i ts  separate the funct ion of  osc i l l . tor  and

receiver. The separation of these functions has the advantage that the
osci l la tor  contr ibut ion to the noise of  the device can be made negl ig ib le,
so that the entire noise generation is in the receiver ancl sample circuits.
The separation of these functions has the disadvantage that it is awkward to
sweep the frequency rather than the external f ield in displaying the reso-
nance or in searching for it. That objection is less true of the crossed

coi l  c i rcu i t ,  prev iously  ment ioncd,  bct i r t r rc  l l r r  l r t t , l le  I ' l lnn,  r  , lc1x ' r r , l .  , ' r r
geomet ry  ra the r  t han  on  a  nun tbc r  o l  l r c t l r r c r r t  !  r f  r r r r l r \ r  (  i l {  u r l  r l r t r l c i l l ' .
St i l l ,  i t  is  qui te awkward to sweep ( )vcr  l  lu t lor  u l  l l r l re  r t r  l rcr l r rcr r r  \
unless the generator  and receiver  l 'unct iorrs  urc torr rht l rer l  I  l rn t  o l r lc t t
is  achieved i f  the sample tank c i rcu i t  is  nradc l  pnr l  o f  lhc or t r l l r r lor  l , rn l
The device is then operated so that the voltagc lcvel o[ orlt l lntor t lcpcrrrlr
cr i t ica l ly  on the tank c i rcu i t  Q.  Al though thc tcr r r r  4at 'Q r l ro u l lc t ts  thc
f requency of  osc i l la t ion,  normal ly  only  the levc l  o[  of lc f l l ton n nr( ,nr t ( ) rc( | ,
so the circuit detects 1". The circuits thus use<.1 arc al lcrrl 6 lrrr ' lor rrl lwo
less sensi t ive than br idge c i rcu i ts  (because of  the conl r rbul r r t r r  o l  oscr l lu tor
noise), and they become very poor at low rf levels, wherc thc n{r\c pr()pcr-
ties of the combined oscil lator-receiver system bcconr Jxror l lut thc
convenience of being able to sweep frequency by adjustin3 olrly t lrc cnprcl
tor in the tank circuit has made these circuits very populnr Robrnrorr
has described a clever combination of Q-meter and murgrnrl orullulor
circuits that seems to have all the advantages of Q-metcr nnd rrrurgrrrnl
osc i l la tor  c i rcu i ts ,  p lus the abi l i ty  to  operate wi th very low r f  lcvc l r  ( to
100 pV) on the sample coi l  (Robinson [5] ) .

Detection techniques

We have progressed gently in this chapter from elementary statisticl l
mechanics increasingly toward experimental considerations. This is as
it should be, since the numerical magnitudes of magnetization, the dy-
namical behavior of that magnetization as it interacts with the externally
applied fields with the Iattice, and with itself (7"r), all force onto the
experimentalist the techniqtres he uses. To conclude this chapter, wc
examine some of  the methods commonly used-and used not  only  in
magnetic resonance to display with greater clarity, with as much freedortr
from noise interference as possible, the magnetic resonance signal. A
few words about  noise in  general  wi l l  have to suf f ice to establ ish the mot iva-
t ion for  the techniques used; lbr  even a modest  s tep beyond mere in t ro-
duct ion to the theory and pract ice ofnoise on e lect ronic  s ignals,  the studcnt
wil l have to consult a text on the subject (particularly recommended is thc
book by Robinson [5] ) .

In discussing the various nuclear resonance techniques, we have slorrghctl
over  a number of  cruc ia l  points in  the in terest  of  moving the narr l t ivc
along. Let us remedy the fault by a rhetorical question: What arc lhc
major sources of noise in typical magnetic resonance experintents'l 

' l  
hc

answer is  osc i l la tor  noise,  source noise,  receiver  noise,  detector  noisc,  at t t l
microphonics.  The marginal  osc i l la tor  c i rcu i ts  are par t icu lar ly  sr rs
cept ib le to osci l la tor  noise;  the br idge c i rcu i ts  and Q-meterc i rcu i ts  t r t r ty  bc
operated so that  osc i l la tor  noise is  not  a factor .  Receiver  noisc is  l l rc
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best kind to haüe limiting your experiment because it can be combatted
by application of design skil l  and/or money, and it wil l always be a l imita-
tion unti l i t is smaller than the inherent noise of the source. The detector,
the device that converts the radiofrequency into direct current, has one
important property. It is usually a diode, so it converts to direct current
efficiently only when the radiofrequency applied to it is, say, greater than
+ V. That is another rather good reason for applying a sizable reference
radiofrequency in addition to the large one required by our analysis of
phase detection.

Now, if the device labeled " peak-reading voltmeter " in Fig. 2-9 is
actually a dc instrument, one is at the mercy of the instabil it ies of dc
ampl i f iers,  s ince very f requent ly  r f  ampl i f icat ion preceding detect ion is
insuf f ic ient  to  prov ide a s ignal  of  convenient  s ize.  The problem is  over-
come by modulat ing the s ignal  at  an audiof requency la ,  so that  the
detected signal is at frequency y- , not zero, and may be amplif ied further.
lf the signal is somehow modulated, the detected signal is at v. and noise
near vd is of importance. Diodes contribute noise with a l/v frequency
spectrum down to quite low frequencies. This restriction is particularly
important for microwave diode detectors. Microphonic noise may, in
principle, be overcome by good experimental design, but the ioeal is often
hard to achieve in  pract ice.  Those wi th long exper ience wi th microphonics
seem to agree that  a noise spectrum of  l iv  nray not  bc bad approximat ion
in practice.

The source noise remains.  A paral le l  tuned c i rcu i t  on resonance looks
l ike a res is tance Ä, :  QaoLo.  The unavoidable noise presented to the
input terminals of the receiver is called Johnson noise, and is given by the
Nyquist formula

VN2 : 4R"k sT L,v (2-s2)

where the noise resistance Vn is in volts, R, is in ohms, I is in degrees
Ke lv in ,  ku ,  Bo l t zmann ' s  cons tan t ,  i s  1 .38  x  l 0 -2 r  J /K ,  and  Av ,  t he
bandwidth,  is  in  sec- t .  Note that  Eq.  (2-52)  depends on Av,  but  is
independent of v, the center frequency.

Put together all these factors and one concludes that the game to play
is to modulate the signal at as high a frequency as possible and to use as
narrow a bandwidth as possible, dictated by Eq. (Z-52). Figure 2-ll
shows schematically the most common method for impressing a modulation
on a signal. The ordinate is 1" and the abscissa is äo , which is varied
around the mean value by an amount H^, at frequency r,_. Thus, H(r) :
Ho + H^ cos 2/ryn t, say. If 11. is smaller than I lyTr, the rf signal at the
detector  wi l l  be V( t ) : (Vo *  Z-cosa.r - l )cos(Dot ,  where Z_ is  propor-
t ional  to  dX" ldHo.  The last  c lause fo l lows f rom Fig.2- l l ,  and would be
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F ig .2 - l l  G raph  t o  shou  t ha t  l ock - i n  dc t cc t s  dy " i l l l .

exact i f  y"  were exact ly  s t ra ight  between Hu -  H^ and Ho *  H^:  the output
s ignal  V( t )  is  ampl i tude modulated wi th a modulat ion depth proport ional
to the der ivat ive of  X" ,  at  least  to  f i rs t  order  in  an expansion parameter
lTz H^.  The f requency spectrunr  of  the ampl i tude modulated r f  s ignal
has a main peak at r,,, and sidebands at lu * r,.. The signal pou,er i:, in
the sidebands. After detection (now we had better say after the first
detector) ,  the s ignal  power is  at  a f requency ln .  r , ,n  is  usual ly  a low audio
f requency for  nuclear  resonance,  but  may be as h igh as 100 kHz in some
commerical  e lect ron rp in rcsonance spectrometers.  1, , ,  must  sat is fy  the
requirements v^4l iTr .  so that  the magnet izat ion can fo l low the f ie ld
and a lways be in  the steady state corresponding to our  solut ions of  the
BIoch equat ions.

The u l t imate s ignal  we wish to record is  to  be at  d i rect  current ,  that  is ,
at co : 0. Clearly the job can be accomplished by the same method by
which the rf signal was rectif ied, and, for much the same reasons, a phase-
sensitive detector is employed. Since the phase of the audio signal
carry ing the s ignal  power is  known, phase-sensi t ive detect ion at  the audio
frequency may be used to discriminate against noise at v,, not in phase
wi th the s ignal  at  r ' - .  The device that  accompl ishes th is  task,  the second
detector, is often called a lock-in. The terminology originated in radar
work dur ing Wor ld War l l .

F inql ly ,  the bandwidth Är ' is  normal ly  l imi ted not  by the bandwidth of  an
r f  ampl i f ier  at  vo ,  or  the audio ampl i f ier  at  r ' . ,  but  by an RC network
arranged as a s imple "  in tegrator"  at  the output  of  the lock- in detector .
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Figure 2-12 shows dx"ldHo of the 27Al resonance in aluminum metal,
taken with the bridge, rf amplif ier, and modulation lock-in technique
described in this chapter.

There are many circumstances in which the signal is strong enough that
signal modulation is neither desirable nor even possible. The only thing
to be done is to sweep through the resonance with the external f ield fairly
rapidly, making sure the subsequent amplif iers and detectors have enough
bandwidth to reproduce the signal faithfully. During this rapid sweep, it
may easily turn out that dHoldt may be too large to be ignored in the Bloch
equations. Their solution then becomes much more diff icult than our
steady state solution; some of the details were worked out in tir- f irst in-
vestigation by Bloch et al., since their experiments were done that way.
Figure 2-13 shows a proton resonance in water .  A problem at  chapter 's
end deals wi th some of  the aspects of  that  s ignal .

6 8  l 0

Fig;,2-12 Nuclear magnetic resonance signal, r ty ' ,  ldH, of , 'Al in Al metal.
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I
I

Fig. 2-13 Proton resonance in water, showing the phenomenon of " wiggles "
(after Abragam [2], Figure III, 15).

Spin echoes
We conclude this chapter on some of the macroscopic aspects of

magnetic resonance, and on the Bloch equations, by describing a pheno-

menon that appears, at l irst glance, to be too special, too clever a trick, to

merit description in a text with an aim as general as ours. But the

phenomenon of the spin echo, of a physical system emitting spontaneous

iignals if suitably prepared, has been exhibited in a sufficient variety of

physical systems to make clear that it is a general property of systems with

the sort of nonlinearity exhibited by the Bloch equations. The physical

systems in which the spin echo has been seen, beyond the original nuclear

magnetization system, include electron spin systems, atomic systems with

induced electric dipole moments (at optical frequencies-the " photon

echo "), and plasmas.
The spin echo is most easily seen in the following sort of system' Let

Trand?", be rather long, but let ?"2 be the parameter characterizing internal

spin-spin interactions. Place ti; sample in a somewhat inhomogeneous

external f ield H,, + H(r), so the variation of the external f ield over the

sample, describecl by H(r), can be described by a T{ 47.2' The co-

ordinate r ranges over the sample. The following sequence of rf pulses is

app l i ed  t o  t he  samp le :  ( a )  a t  t : 0 ,a  90 'pu l se ;  ( b )  a t  l :  x ,&  180 'pu l se ,

*here Z, > t > Tl . The result is a spontaneous signal of magnitude

Voexp(-2r l l2)  appears at  t :2 t .
Examine the process with the aid of Fig.2-14. The 90' pulse tips Mo

into the x direction of the coordinate system rotating 4t ron: yllo (see

Fig. 2-l4a). The " isochromats" precess in both directions relative to the

x ax is  unt i l  they have fanned out  complete ly ,  in  t>Ti  = l /y I ( r ) ,  where

a(r; is some average deviation of the field from l/e (2-l3b). Between lhc

t
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end of the 90 'pulse and the beginning of the 180" pulse at  t :  r ,  a  repre-
sentative magnetization vector wil l precess relative to the x axis of the
rotating frame by the angle $t: yH(r,)t. The index i labels a particular

small region of the sample. lt is convenient to label the precession angle
re lat ive to the y ax is :  @, :  (n 2)  + {1,  where t ' j  is  i l lust rated in  F ig.  2 '14b,
for t ime t just before the 180" pulse. The 180' pulse fl ips the entire
"pancake" about  the 1 'ax is .  The posi t ion of  the magnet izat ion that  had
p recessed  t ' ,  i s  shown  i n  F ig .  ( 2 - l 4c ) .  l t  i s  now  a t  Ö i :@ 2 )  -  Ö i .  I t
cont inues to precess in  the same sense dur ing the subsequent  t ime,  so
that, at 2t, it has accumulated another Ö, : ("12\ + 0', . The total phase

accumulated at 2r, including the 180' pulse, is thus ("12) - $', + (rl2) +

öi : n. The accumulated angle is independent of the labeling index i;
therefore, all regions of the sample contribute to a signal at t :2t, and all
magnetization vectors add to form a macroscopic vector in the x directron
in the rotating frame. The shape of the echo may be described as two
free induct ion decays back- to-back,  as shown in F ig.  2-14e.  The
signal  is  at tenuated f rom the in i t ia l  magni tuc le of  the f ree induct ion decay,
Vo,  by real  T,  processcs.  which resul t  in  t tnrc 'coverablc loss of  phase

coherence,  as d is t inct  f ' ronr  losses caused by stat ic  magnet ic  l ie ld inhomo-
genei t ies.  l f  the echo height  is  nreasured as a fut . tc t ionof  r , the 90 to t80 '
pulse separat ion,  the echo height  wi l l  fo l low the exponent ia l  exp(  -2t iTr) .

The preceding example of  a spin echo is  the barest  in t roduct ion.  Many
var iat ions in  pulse length,  sequence,  and number are possib le.  The tech-
nique is frequently used in the study of l iquids and solids, where vartous
contributions to the l ine widttrs can often be unraveled. There are many
modern appl icat ions of  the basic  idea in seemingly remote f ie lds,  such as
nonl inear  opt ics and p lasma diagnost ics.

2 .1 .  CONCLUSION AND L ITERATURE SURVEY

Most  of  the matcr ia l  in  th is  chapter  is  covered in every text  and rev lew
art ic le  that  d iscusses magnet ic  resonance.  The mater ia l  requi r ing stat is t i -
cal mechanics may be lbund in Feynman [6] and Reif [7], and, of course,
all more advanced treatmcnts of statistical mechanics. Treatments of the
Bloch equations more or less on a somewhat more advanced level than
found here are in the article by Pake [8], the books by Andrew [4], Kop-
fermann [9], Slichter [3], and Abragam [2]. Discussions of experimental

Fig. 2-f4 (a) Effect of the 90' pulse on the magnetization vector Mo. (b)
"Pancake" formed in xy plane of rotat ing frame after r > Tl.  (c) Effect of
the 180' pulse on the i th magnetization vector. (d) Precessing magnetization
vectors as echo is forming, corresponding to t 'of (e). (e) Pulse sequence and
signals seen at various t imes. r 'corresponds to vector diagram of (d). Dotted
l ine traces echo envelope as r is varied.
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techniques may be found in Andrew and Kopfermann. A totally ex-
haustive compendium of everything done unti l 1966 in the area of micro-
wave instrumentation is in the book by Poole [10]. The preViously

mentioned monograph by Robinson [5] on noise in rf circuits gives an ex-
cellent and clear discussion of elementary principles, with applications in
the last chapter to magnetic resonance instrumentation.

We should perhaps conclude by emphasizing that much of our discussion
in this chapter is applicable beyond nuclear magnetic resonance, even
though the language of NMR was used for convenience. The Bloch
equations are not valid generally for nuclear or electron spins in solids
(except conduction electrons in metals), but they are correct for l iquids,
and do serve to prov ide an in t roduct ion to the phenomena involved.  I t
is  a lso usefu l  pedagogical ly  to  have them avai lable fbr  ca lculat ing X'  and

x",  in  order  to prov ide concrete examples of  these important  but
slightly abstract functions. We remind the student that the chapter has
been macroscopic-we moved as quickly as possible to macroscopic
magnetizations and response functions for macroscopic samples. The
" model theory " we used, the Bloch equations, was entirely phenomeno-
logical, and also dealt only with macroscopic magnetizations and fields.
The observed signals are also macroscopic voltages, and the experimental
problems of measuring them formed an important part of the chapter.

Problems

2-1. Find the correct approximation to Eq. (2-17) in the l imit yhHsl2kT4l.
What temperature T must be reached for protons (y:2.6 x lOn G-r
sec-') in a field of lOa G before the high temperature approximation is
wrong by l0f ? Find the same quantity if the magnetic moment is that
of the electron (y" :  | .74 x lO1 G-' sec- t).

2-2. Obtain Eq. (2-23) directly from Eq. (2-17) in the high temperature limit of
problem 2-1. Find Xo for protons in water at room temperature.

2-3. From the Bloch equations and Eq. (2-33), obtain the maximum power
absorbed per unit volume from the protons in water at 60 MHz. Use an
Hr that makes the saturation parameter S : y'Ht'TrT2: I in Eq. (2-44).
Assume T, :  Tt:  3 sec.

2-4. Find the approximate maximum voltage at the input of an rf receiver
produced by the free induction decay after a 90'pulse applied to Na23Cl.
Assume a receiver coil of 5 turns. cross section I cm2. and a resonant
frequency of l0 MHz.

2-5. Find the signal at the receiver input from a spin echo in water under the
fol lowing experimental condit ions: coi l ,  l0 turns, area I cm2; pulses,
90 to 180" sequence, r -  2 sec, | ,  :3 sec.
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2-6. Invent other pulse sequences involvin-g more than two pulses that gtvc rtrc

to other echoes. (There are almost limitless possibilities')

2-7. Figure.2-13 shows the proton resonance in HtO in a relat ivcly hotrt<t-

g"i""ui n"ro. The beating phenomenon' known as " wiSgles"' artscs

because the exteriäl rnugt"iiJ field is changing rapidlv. enough that thc

field is off resonance before the transversJ mägnetization has decaycd'

Since the -ugn",,täiion pt*tt"t at a frequency proportiona.l to thc licltl'

the signal beats w;ih the constant osci l lator frequency' and.the.c()nstantly

chang ingd i f fe rencef requencyappears in thedetec teds igna las . .wrgg |cs ' ' '
The sweep in Fig. 2-13 is t ineär at 0' l  sec and 5 mG per division' frst irnatc

it t orn ih" figu.. and the field inhomogeneity at the sample'

2 - 8 . T h e c w ( c o n t i n u o u s w a v e ) o r s t e a d y s t a t e r e s o n a n c e s i g n a | i n a p a r t i c t r l n r
t iquiO ,u*pte 

"onrirt ,  
of two nearby I ines of equal intensity^ and lransvcrsc

relaxation time f, ' Calculate the fre'e induction decay following a (X)

pulse if a transient L-p"iit*tt is performed' If the lines arc scparatcd bv

angular frequency Ao in the cw experiment'  show that an approxirnatcly

90'pulse can Ue applied to both with a singlc prr lsc applrc<l at.a l-rcqucncy

midway between-ihe l ines i f  the go pulsc contl i tron rs satrsl icd, and lhc

pulse length satrsf ies tf ie inequati ty 7 '1 15ro) '  (Satisf 'yinB thc q) pulsc

condit ion simultanc<.rusly meäns l l ,  >. \at ly, wlrcrc ' \r ,r /7 rs lhc.scpl lrol l() l t

o f  the  l ines  in  l ie ld  un i ts '  Such an  / / '  i s  sa i< t  to  bc  su l l i c rcn t  t ( )  "c ( )vc r "

the l ines. )

2-g. Discuss the shape of the echo formed after two pulses of problenr 2-8'
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To complete and sharpen the paradox, we write down the magnetic
field produced at a distance r by a point magnetic dipole.

CHAPTER 3

Line Widths and Spin-Lattice
Relaxation in the Presence of

Motion of Spins

This chapter will be concerned v"11t. providing a microscopic model

with which to estimate the parameters of the Bloch equations Q and Tr.

To do so, we shall introduce the complementary concepts of random fre-

quency modulation and random walk. The main use of these concepts

will be to achieve a clear understanding of the motional narrowing of

nuclear magnetic resonance lines, but the ideas are also important in the

understanding of other experiments in modern physics, which we shall

discuss in the latter part of the chapter.

3-I. INTRODUCTION

From a strictly economic point of view, magnetic resonanc€ owes a
great deal to its usefulness in chemistry. It is useful in chemistry because

the nuclear magnetic resonance line widths in liquids are so narrow that

resonant frequencies differing by as little as a part in 108 may often be

resolved. It has been found that the frequency of nuclei in different
chemical surroundings depends on the details of the surroundings.
For example, the resonance frequencies of protons in ethyl alcohol,
CH3CH2OH, are divided into three groups, corresponding to the protons

in CH., in CH2, and in OH. Tl:re chemical shifts caused by the different
chemical environments are small, however, compared with the magnetic
dipole-dipole interaction between the protons in the molecule, which
corresponds to a magnetic field of l0 G produced on one proton by another
an angstrom away. Our first guess ought to be that the resonance lines
would be about l0 G wide, precluding a resolution of better than one part
in l0a. We shall be concerned with the solution to this apparent paradox
in this chapter.

( 3 - l )

The field Ha has the {ämiliar dipole shape; the interaction energy of one
dipole at the origin with another dipole at r has a rather complicated
angular dependence, a l lrr radial dependence, and it depends as wetl on
the relative orientation of the dipoles. Thus the dipolar f ield varies from
site to site, and cannot be exactly the same for each nucleus. The simple
estimate of lHTl - l0 G between protons, for example, is calculated by
using p/r3, where r is the nearest neighbor distance, and is to be taken as
an estimate of the rough magnitude of local f ields in hydrogenous solids.
Thus we present the paradox as follows. The widths of nuclear reso nance
l ines in  a l iqu id can be a f ract ion of  a cyc le per  sccond in the presence o[
local  d ipolar  in teract ions as Iargc as 50 kHz.

I t  is  our  purpose in th is  chaptcr  to  resolve thc paradox both quant i ta t ive-
ly  and qual i ta t ive ly ,  to  d iscuss the Bloch equat ion re laxat ion t imes T,  and
T, as a function of the resonance field or frequency, and to broaden the
discussion to include the phenomena of "exchange narrowing" and
"exchange broadening" in nuclear and electron paramagnetic resonance,
the Mössbauer effect, and the intensity of Bragg reflections in X-ray
crystallography. We also hope to make clear the distinction between
"motional narrowing" (a name for the effect we want to discuss) and the
"pressure broadening" of  I ines in  atomic spectra.  I t  must  be admit ted
at the outset that the way of understanding the phenomena that we shall
develop is a natural one for magnetic resonance but not so natural lor some
of the other phenomena. Nevertheless, it is important to grasp pheno-
mena from as many viewpoints as possible, so it is worth the strain placed
on our  method to do so.

The resolution of the paradox involves the recognition that in a l iquid,
a gas, and even in solids under some circumstances, the resonant spins can
move substantial distances relative to their average spacing in T, , and
even in a Larmor period in some circumstances. Thus, the local f ields
with which we are dealing are not static but rather time dependent, most
often in a random way, and we must develop ways to understand how the
time dependence affects the resonance experiment. To begin with, we
shall treat the problem temporally; that is, we shall examine the precession
of a typical spin as a [unction of t ime. Although we shall thus provide
ourselves with a useful formula with which we can estimate T, in a widc
variety of cases, we shall not have grasped the significance of thc tcrrrt

H a : - { + : P r t .
r -  r '
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" motional narrowing " unti l we have reexamined the problem in fre-
quency space. To do that, we use some of the concepts and language of
frequency modulation of a classical oscil lator.

The language wil l be classical throughout, and we shall deal in quali-
tative estimates. Such an approach does the subject something of an
injustice, since the phenomena are susceptible to quite precise and elegant
formulation via the density matrix of quantum statistical mechanics. we
henceforth banish from these pages any serious reference to the density
matrix, and guide more ambitious and sophisticated readers to the text
by Sl ichter  [ ] .

3-2.  RANDOM WALK CALCULATION OF T2

we imagine ourselves sitt ing on a proton in water, for example, respond-
ing to the various magnetic f ields in the sample. The strongest of these
is the external f ield Ho, and we can dispose of it by looking at the world
from a reference frame rotating at lHs : ar. The internal f ields caused
by the magnetic dipoles of other protons are random in orientation and
time dependent. The z components of the local dipole fields add to or
subtract from l/o and cause a more rapid or less rapid precession than cr;o
about the z axis. In the rotating frame, these z components are responsi-
b le for  the only ex is t ing precession about  the z ax is .  Looking back at  the
discussion surrounding the Bloch equat ions in  Chapter  2,  the student
should be able to recognize that these fields contribute to a ! process.
we shall defer unti l later the discussion of T, processes, but it is appro-
priate here to identify their source. precession of the spin away from the
z axis is caused by transverse fields that are static in the rotating frame.
Thus we expect local f ields having components transverse to the z direction
and frequency components at the Larmor frequency to contribute to ?,
processes. There is more to it than that, and we shall return to the Tl
problem later.

Let us construct a model of the longitudinal (z direction) local f ields,
and compute T2. Let us presume that each spin in the sample sees a
constant local f ield hr4 Ho in the z direction for a time t", after which it
may or may not, with equal probabil ity, reverse itself. In these terms. the
problem can be phrased in terms of the famous " random walk " problem.r
In that problem, the mean square distance traveled in the x direction,
(x2), after n steps, each of length Ä in either the + -r or -.r direction, is

(x2) : nL2 (3-2)

I  For a der ivat ion using ar i thmet ical  induct ion,  see Feynman [2] ,  vol .  l ,  p.  G_5.
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In our problem, the unit of length is phase of precession about the z axrs
in the rotating frame, and the step length is yhrr". After t ime r, the
number of steps n rs tf r"; therefore, from Eq. (3-2), the mean square
phase accumulated is

(O(r) ' )  :  !  g t  6, )2 :  y2hr2r" t 1 1 - - l )
a c

It is perfectly within the spirit of the Bloch equations to identi ly 
'I l  

as
the time such that (Ot) : I (rad)2.2 This criterion yields

(  l - 4 )

where örr.r : lh t.
The par t icu lar  problem we have "solvet l  "  seems l r  vcry nr t i f ic iu l  nrrx lc l

for  the behavior  of  in ternal  l ic lds in  a l iqu i r l .  
' l  

l rc  t le t inr t ronr  o l  r lor  l r r t l
t .can be sharpencd a grcat  dcal  but  at  thc cxpcnsc ot  lontc r r t l lherr rn l r tu l
complexi ty .  As i t  s tands,  Hq.  (3-4)  prov idcs un cxt rcmely urcfu l  er l rnr l tc
o f  7 ,  i n  a  l i qu id .  I l ' you  w ish  to  t h i nk  o l 'mo t i ons  as  bc rn3  morc  " f l u r t l . "
lcss jerky than the model suggests, then rc may bc rcaurtled rt lhc ltnrc
Curing which the local f ield changes by an amount compllrtrh lo rtr
magnitude-a rather vague concept, to be sure, but onc which nrrl lrr
satisfy one's feeling that molecules are in continuous motittn, Aclurl lr ' ,
the 'Jump " model has been shown by NMR techniqucs or wcll rr hr
neutron diffraction to be a fair description of a l iquid. rn whrch I ltvcrl
environment around a given molecule pcrsists for r", l ir l lowed hy r chrnlr
to another  conl igurat ion,  wr th thc t lur l t ion of  the changrnj  l tmo hrr r rp
much less than r . . .  l l 'onc rcgi r r t ls  thc constant  t "  to  be an nvct t ; l ,  tnr t  t l rc
single local f ield to hc an avcragc ()vcr local f ields causcd by rl l Jxrmrl' lc
local  arrangcnrcnls o l 'ncur ly  nr : rgncl l (  l l ) ( )ments,  then the prcturc mry n, r
look so unreal is t ic .  Ant l  r t  rhoul t l  krok qui te good l i r r  dcx.r lb ln;  rhc
ef lect  on the nuclcar  rcs()nrn(c lurc wrr t th  of  d i f fus ion in  ro l r l r

Equat ion ( l -4)  rs  u rc lsorrublc  cstnnate of  T,  as long l r  /kor ,  .  I  l l
t .  is  long,  thc stcp length , l r , r  rs  r tsc l l ,  when d iv ided by y,  the wldth of  r l rc
resonance l inc.  So r r r  thc nrc\cn( .c  o l  r r  changing local  envr tonmanl ,  t l rc
I ine width is  narrowcr thnn t l rc  r t i r t r t  l inc width öat ,  as lonl  r r  lhe hx.r l
envi ronmenl  changcs '  nrprr l ly  (  ( ) rn l ) : l r ( . ( l  wi th l /ö@.

Equat ion (3-4)  rs  uscf 'u l  r r r  u  r+, r t lcr  vur iety  of  c i rcumstnncct  lhan t l r .
student can prcscnlly Inlnßurc Wc tl igress for a paragrlph flonr t lrr

2 The usc of  t l lc  n( ! t r t ron I  j  rnr tcrr l  of  / ,  u, i l l  be expla ined later ,  whrn 11 f r t r r l rxr
are discusscd.  I  l rc  r t r r t r r r r  t t ,ut  l r t$. rn t  ,  , rnJr  I  ]  is  made herc to indrerta lh l t  ra nrr
no t  havc  i nc l u t l c t l  l l l  p , r r l h l r  r , , u r r  r 1  , , 1  / ,  r r r  t l r i s  d i scuss ion .

fr: {u.)'""
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main line of thought to show the application of measurements to the

measurement of the diffusion constant. Let t" be the mean time between

jumps or changes in the local environment. Imagine that a spin jumps

spatially an interatomic distance 40 each time. It proceeds, then, by

random walk (in three dimensions) and travels in time t a mean square

distance

The process described is called diffusion. lt is described in continuum

theory by a differential equation in the concentration c of the diffusing

constituent:

. = t
l t = - a o

D Y 2 c  - a ; : ,

,=n

(3-s)

(3-6)

(3-7 )

The constant D is the diffusion coefficient. If Eq. (3-6) is solved for

simple init ial conditions and one-dimensional geometries, the root mean

square distance the concentration spreads in time / from an init ial con-

centration is approximately (2Dt)| t2. Thus in Eq. (3-5) we identify

Since ao is related to the density, we have in Eq. (3-7) an expression for

t" in terms of macroscopic quantit ies that can be determined by quite

different, nonresonance experiments. Alternatively, we see from Eq. (3-4)

that T, measurements can provide a value for the diffusion constant D,

a number frequently hard to get if one is concerned with the self-diffusion

c,f a molecule surrounded by identical molecules-H2O in HrO, for

example.
To summari ze Eq. (3-4) and some of the subsequent discussion, we plot

logT,  versus t .  in  F ig.3-1.  The abscissa might  easi ly  be l lD or  4 lT,
where 4 is the viscosity and Tthe absolute temperature. For justif ication

of the last clause, see the reprint of Bloembergen's thesis [3], the original

work in the field. Note in Fig. 3-l the leveling off of 7r to öco-r at a

value of t" on the order of öco-r, something we have justif ied only by a

plausibil i ty argument so far.
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I  l6co

I /c.:o I /6c,:

F ig .  3 . '1  LogT,  versus  logz . .  P lo r  o f  Lq .  ( l -4 )  in  rcg ion  o f  i t s  va l id i ty ,
öcoz. ( l

3-3 .  VERY SHORT CORRELATION TIMES:
oo?"  (  I

Suppose aor"4 l ,  and suppose the medium is  spat ia l ly  isot ropic  in  the
sense that the fluctuating intepal f ields point in no preferred direction.
Then the magnitudes of the fields parallel to and transverse to l/o are the
same, and their frequency properties are also the same. As a result, the
random walk in the transverse plane in the rotating coordinate system,
produced as described in the last section, also occurs av'ayfrom the z axis.
This longitudinal relaxation, a T, process, is produced by transverse local
fields s/alion ary in the rotating frame, that is, at coo . The two independent
and orthogonal random walks occur at exoctly the same rate if the magni-
tude ofthe fluctuating fields at or near zero frequency is the same as at the
Larmor f requency,  rou.  The s implest  and most  p lausib le descr ipt ion of
the random internal f ield has that property if aror. ( L

Since there are two orthogonal transverse components of the local f ield
in the rotating frame, and since they act independently, the mean square
angular  migrat ion of  a spin av ' ty  f rom the z d i rect ion is

( d r ,  ( r ) ' )  : 2 y ' h 1 2  t , t

lust  twice as great  as in  Eq.  (3-3) .  Again set t inE ör ,  (Tr)2 :1,

(3-8)

we ob ta rn

( t - 9 )l,: zrda"": +



64 Introduction to Magnetic Resonance

At this point, we see the reason for the introduction of the notation T)
before Eq.  (3-a) .  I f  we wish to calculate the parameter  Tr  ,  which
character izes the l ine width of  a Lorentz l ine,  we must  inc lude not  only
the inhomogeneity of the quasistatic local f ields (so-called secular broaden-
ing) ,  but  a lso l i fe t ime,  or  nonsecular  broadening.  Reexaminat ion of  the
Bloch equation for M, and a l itt le thought produces the following con-
clusion. A I process is one that causes precession of M, away from the
x ax is  of  the rotat ing f rame. Quasistat ic  f ie lds in  the z d i rect ion do th is ,
as do fields in the y direction at roo. Fields in the x direction produce no
effect because they exert no torque on Mr. Hence, we should have

(3- l  0)

where the f i rs t  term is  f rom Eq.  (3-a)  and the second is  hal f  o f  Eq.  (3-9) .
Comparing Eqs. (3-4), (3-9), and (3-10), we see that

T r :  T z (3 - l  l )

The equal i ty  holds in  the l imi t  aor"4 l  and depends,  we re i terate,  on
spat ia l  isot ropy of  the local  f ie lds.  We have a lso f i l led in  more of  F ig.3- l
i f  we regard i t  as a p lot  of  T j 'or  T,  t  versus r . ,  rather  than (T. j ) - r  versus
r"; namely, the 7, and T, curves for r. ( l/c.ro coincide. To fi l l  in the
7,  curve for  longer r "  we requi re more general  analyt ica l  tools ,  the develop-
ment  of  which we shal l  ind icate in  the next  sect ion.

3-4.  RANDOM FREQUENCY MODULATTON;
SPECTRAL DENSITY

In this section we shall make heavy use of the analogy between a
magnetic moment precessing at the frequenc! v: (yl2n)lHo + äL(r)l and
a classical, frequency modulated oscil lator transmitting, for example,
classical music at a center frequency of 97.8 MHz.

We shall begin by considering a proper mathematical description of
frequency modulation. The simplest situation to treat is r- sinusoidal
frequency deviation; that is, the angular frequency of the t.cil lator is
given by

@(t) : @o + L@ cos qt (3-12)

where Ac-r is the frequency deviation and q is the frequency of modulation.
We now need an expression for A(t), the amplitude of the fm oscil lator
as a function of t ime. One approach might be to write

l l l
_ - _ ! _

T2 Ti 
' 

2Tl

A(t) : ,4ofcos rr-r(t)l]
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We shal l  not  number that  equat ion,  s ince i t  is  wrong,  just  as i t  is  wrong

to wr i te  that  the d is tance a car  t ravels in  t  to  be d :  n  i f  t '  is  not  a const i rnt .

The argument of a trigonometric function is a phuse, and the phasc

accumu la ted  be tween  / ' : 0  and  I  w i t h  f r equency  g i ven  by  Lq  (1 -12 )  i s

et L.ot

Ö l r l :  I  r ' r ( t ' )  t l t '  :  u t o l  1  -  s i n  r ; f
J o  . l

Now we can sa fc ly  wr i tc ,  comple te  w i th  equat ion  nu ' t rbcr ,

f A,ol I
A( t ) :  .4o  cos  

loo  
I  +  -  s in  A l  

I

( r - | r 1

(3 - r7 )

( : 1 - 1 4 )

The ra t io  Lo lq is  an  ex t remely  impor tan t  p i l ra lnc tc r  l i r r  l i r tu rc  t l t sc t tss to t ts

t\t,t (  l _  t 5 )
q

where  nr  i s  c l l l c t l  l l t c  nnx lu lu t io r r  indr . t .  l l s  s t rc  rc lu l tvc  l ( t  t t r t t l y  wr l l  bc

c r u c i a l  i n  m a n y  a p p l i t  t t l t o l t s .

W e  w i s h  t o  k n o w  t h c  f ' r c q u e n c y  s p c c t r t l l r l  o l  l ' { ,  ( l - 1 4 )  l  t r r t ,  r t  i s

m o r e  c o n v c n i c n t  t o  r c w r i t c  I : q  ( , 1 - 1 4 )  u s r l r g  t h e  l r l S o n o t t t c t t t t  t t l c t t t t t y

cos(a  *  ä )  :  cos  a  cos  ä  -  s in  (J  s in  / r :

A ( t )  : , 4 , , [ c o s  ( r ) r )  t  c ( ) \ ( r t t  \ t t l  { t }  \ l t l  . r r r ,  r l l t ( r t  r r r r  r 7 l } l  ( ] - 1 6 )

From immec l ia tc  inspc t t r r )n  wc  ( i t r l  rcc  l l tn l  l l t c  n tnnr  f  f  c t l t rc t t t l  cor t tponents

are  a t  o ts ,  an t l  lhc  o l l t c r  sJ r t l t r t l  to t t l c l t l  t t  h l l t rc r l  l r y  the  te rms

cos(z  s in  q / )  an t l  s i r t (n l  s r r r  r l t ) .  I  hcy  n tc  ;x t t rx l t t  t . r r t l r  l ) c r  rc t l  2n fq ;  tha t

is ,  the  argumcnt  o l  t l l csc  l c r t t t s  fc l l1 . r l l r  r t r l f  wr l l r  t l t ' r t  Pc t to t l '  That  fac t

makes them pr i r r rc  t i t t t t l t t l i t t c r  lo t  c t1 r l l t r lo l l  l t l  |  ( r r l l  r c t  sc r ics '  Cons ider

the  cos ine  lunc t io r t

We can use on ly  c t l s i t t c  l c r l t l r  t t t  l l r c  c tp ln l l ' r l  \ l t r (c  the  cos ine  is  an  even

func t ion  and the  coc l t i c tc t t t r  r t l  t l t t c  le t t t t r  t l ' t t l , l  r r t ' . cssar i l y  van ish '  Thc

coef f i c ien ts  a^ (m)  i r rc  l i r t r r r r l  by  n tu l l rp ly rn l  l r , , t l t  s t t l cs  o f  Eq.  (3 -17)  by

cosn 'q t  and averag ing  ( )ver  n  Sr r t ,x l  I  l l  t , r t t  do  so ,  you  f ind  thc

fol lowing integral exprcs\r()n :

c o s ( r n  r t t t  , r r l  -  
L  r t . ( t t t ) t o r  t r r l t

' _ l l

a^ . ( t r r \  
l  . 1 , , . , t .  

n  . r ,  ( , r " (  r r r  r r r t  q l )
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This expression may be developed in a power series in rn sin qt, which

becomes, upon integration, a power series in ,|1. Fortunately, the labor

has already been done; consultation of a complete set of mathematical

tables [4] under "Bessel Functions" shows the coemcients of Eq. (3-17)

to be Bessel functions of integral order:

cos(m s in qt ) :  Jo(m)+ 2 i  Jr r (m)cos2kqt  (3- l8a)

and

s in (n r  s i n  q t )  :  2 i  t  r o * , (m)  s i n [ (2k  +  l ) q t )  ( 3 - l 8b )

The functio ns J^(m)"* ,"rr., *nctions of integral ortler o[ the first

kind. Although they are surely less familiar than trigonometric functions,

the student should not be put off by them. A graph of the first three is

shown in F ig.  3-2 '  Note " Io(0) :  l ,  and / ' (0) :0,  n:0 '  A lso note that

,/o(n) deviates as ra2 from its value at m : 0 for small m, and the others

begin from zero as mn. A qualitative look at Fig. 3-2 and these remarks

are all we require o[ the Bessel functions. The expressions (3-18) must

be put  back in to (3-16) :

A(t) :  . /6(trt)  cos u)o t t " /1n1 cos( r r ;s  +  nq) t (sgn n)  (3 -19)\-
L

Fig. 3-2 Bessel functions of the first kind, "/,(rn), versus m, for n :O, l, 2.
of the power
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The notat ion (sgn n)  means to mul t ip ly  by (+ l )  when r  > 0 and by ( -  l )

when n < 0.  Again,  Eq.  (3- l9)  is  most  va luable to use in  graphical  form,

as in  F ig.  3-3,  which g ives the f requency spectrum of  the power,  pro-

portional to A(t)2. The graph has been presented with A(I) : constant,

t..uu.. in our applications, the local f ield, which causes Ao, is a fixed

characteristic of thc substance, whereas q m^y often be changed within a

given sample, by changing the temperature, for example' (We shall

p t . r . . t t  one s i tuat ion,  howcver,  in  which i t  is  4 that  is  f ixed by the nature

of the substance ancl A(, that is changed by the experimenter.) The

thing to notice about Fig. 3-3 is that the power spectrum is mostly con-

tained within Arrr of @6 , and when l?? < l, which means q > L@, the power

is mainly in the center frequency <.cro. The sidebands are sti l l  spaced by

the modulation frequency 4 but are small in amplitude. If you try to

change the frequency back and forth too rapidly, the major effect is not

to change i t  a t  a l l .
A l though thcrc is  only  a qual i ta t ive rcscmblancc bctwecn the problem

of s inusoidal  f ' rcqucncy n loc lu l l t t ion l lnd ot t r  problcrn of  nrot ional  n i l r row-

ing,  the resul ts  o l  thc prcceding analys is  arc i t l rc : t t ly  sr rggcst ivc.  I f  we

make  an  a rb i t r l r r y  co t rncc t i ( ) n  bc twcc t r  t hc  spcc t r t t t t r  o l ' I  i g .  3 -3  l r nd  t he

l ine width in  a nuclear  resonance,  we can sere the or ig ins ot  thc bro l r t len ing

that  takes p lace as r"  increases and becomes on the order  t l f  l /ö to in

Fig.  3-1.  For  a l l  va lues of  r "  such that  äorr"  < l ,  the "  modulat ion index"

is less than I ; that is, öc,.rt" is roughly the same as the modulation index.

There is, of course, a vast difference between the case of sinusoidal

modulation and the random fluctuations of the local f ield in a l iquid. To

q  q  m = 5 . 0
l l  r r  i

, l - i ,11 m = 3 . O
t -

Fig, 3.3 Fourier components
,n  0 .5 .  1 .0 .  3 .0 .  5 .0 .

Acl z 6(,)

spec t rum o f  Eq .  ( 3 -19 )  f o r
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sharpen the distinction, we make the following analysis. Let hr(t) be
the local f ield seen by a nucleus at some arbitrary time f. Form the
product hLQ)hLQ * z) and average over all t ime for a particular nucleus.
That process defines /(r):

- f ( r l : < h L Q ) h L U + r \ > (3-20)

where the brackets ( ) indicate average over time t and f(r) is the auto-
correlation function of hr. It is independent of t since the sample is
assumed to be homogeneous and in thermal  equi l ibr ium; there is  noth ing
special about any particular t ime. Consider what we expect of /(r) as
r becomes large. If the sample is large, if the local f ield is produced by
many nucle i  undergoing random mot ions.  then we ought  reasonably
to expect  no rc lat ion between l r r ( t )  and h, , ( t  + r1.  Since / r r .  can be posi t ive
or  negat ive,  and s ince,  in  fact ,  the temporal  randomness of  f t .  means
<hL( t l >  :  0 .  we  expec t

l i m / ( r )  : 0 (3 -21  )

to be reasonable behavior for f(r) at large t. Contrast that behavior
wi th the autocorre lat ion lunct ion of  Eq.  (3-12) :

(co( t )@(t  + r ) ) :  ( (<, . r0 *  Acocos qt ) la tu *  Aocos q( l  + t ) l )

cos  4r
: (t)u' * L@z --------:-

L

(3-22)

The leading term, c,.re2, is as expectetl, but the second term certainly does
not  vanish.  Therefore,  i t  is  c lear  that  a s imple modulat ion such as
Eq'  (3-  l2)  fa i ls  to  sat is fy  one's  in tu i t ive requi rements for  random
modu la t i on .

The simplest form of f(r) that satisfies all the requirements is an
exponent ia l :

" f  G) :  (h,( t) ' )  exp - l r l / r . (3-23)

Equation (3-23) reintroduces the correlation time r.. The average over
t ime of  the square of  the local  f ie lc l ,  ( i . ( l )2) ,  is  the same as the average
of  h, ,2 over  a l l  the nucle i  in  the sampre by a fundamental  hypothesis  of

:  roo2 * o- ' (*J '" '0"o, qt  cos q(t+ t l  ar)
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statistical mechanics [51. We see that we are able to specify the local

field, and hence the ranclom ticquency modulation ol' each " nuclear

oscil lator" by that local f ield, less precisely than we did in the simple case

of sinusoidal modulation, but we do preserve some points of similarity'

These include the correspondcnce between (yhr\2 and Ato2, and the simi-

lar i ty  between the paramcter  4 of  Eq.  (3-22)  and l / t .  o f  Eq.  (3-23) .

At  th is  point ,  our  resor t  to  p lausib i l i ty  arguments must  come to an end,

because the subscquent  developnrcnt  re l ies on theory that  uses the densi ty

matr ix  of  quanturn stat is t ica l  nrechanics and t ime dependent  per turbat ion

theory.  Thc l -u l l  theory is  noth ing less than a der ivat ion of  the Bloch

equat ions f rom the basic  pr inc ip les of  quantum stat is t ica l  mechanics.  Our
previous paragraphs have attempted to establish a climate of acceptance
in the student's mind for the results. The central formula of the theory

is the Fourier transform of the correlation function.fG), which isj(a.r) ' the

spectral density function :

Equation (3-24) is one of a pair of integrals known as the Wiener-

Khintchine relations (see reference [5], p. 586). In the case of the par-

ticular form of /(t) given by Eq. (3-24),

j ( r , r)  :  l [ -  ,<t  
r1r l t rL(t  + 'c)>e-i- '  dr

i ,pk t l :  I  l *  * t ' , " { t ln r ( t  
+  t )e - i - '  d t

(3-24)

(3-2s)

(3-26)

The spectral density function determines the effectiveness of the local field

in producing transitions between quantum mechanical spin states. The

relaxation rates l /7, and I lT, are determined byi(ro)' To write down the

final results, we must specify 7(a;) more completely' Since the local f ield

has the usual -r, -r ', and z components, a more general j(o) may be written

where a, ß : x, y, t. If the local field is truly random, then (ft.(l)är(t + t))
:0, for af B, and the only components of inu are i,,(a), rr(<o), and

j,,(a). In terms of the spectral density function, the complete equation
for T, I that replaces Eqs. (3-4) and (3-10) is

Ti ,  :  y2u , , (0 )  +  j r r (as \ l (3 -27)
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The first term is the same as Eq. (3-4), which we obtained by the random

walk argument, and the second is the " lifetime broadening " effect we

discusseä prior to Eq. (3-10). ln terms of /r and t" , from Eq. (3-25) we get

T r '  :  f ( rn:  Sr"  + (h,2) 
T .*V*)

The assumption of spatial isotropy, made to obtain Eq' (3-10)' is that

(h , ' ) :  ( h r t ) :  ( h "2 )  =h "2 .  The  resu l t  f o r  T ,  r  i s

Tr '  :72[ j , , (@o) + j r r ( r rs) ]  :p^r ,

W e c a n n o w c o m p l e t e F i g . 3 - l b y i n c | u d i n g t h e p o r t i o n o f t | r e T ' c u r v e
for  r ,> l l la , r .  The fu l l  curve is  shown in F ig '  3-4 '  At  r . :  l lao '  T1

goes ihrough a minimum, then increases, whereas 7i continues to decrease.

Ätthough these features are an obvious analytical consequence of

l og  I 1  , l og  12

(3-28)

(3-2e)

I  l6<, :

I I <^:o I  l 6 u

Fig.3-4 Log f ' ,  log T. versus logz. for Eqs. (3-28)'  (3-29)
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Eqs.  (3-28)  and (3-29) ,  i t  is  inst r r . rc t ivr -  to  sce how they can be remembered
easi ly  by examining one fur ther  property  of  j ( r r - r ) ,  Eq.  (3-25) :

I  , ' '  '  T t l t ' t  , ' 4  d x  f t
, r f  i ( u t \ d t t t : l  . - - ,  , : l  : -  , : .  ( 3 - 3 0 )
h L ' : o  . ' u  I  f  u ) ' t . '  J u  I  +  x t  2

The area  under .T( r , - , )  \ ' L ' rsu \  ( ,  i s  a  c r rns tan t ,  independcnt  o f  r . .  Severa l
j ( o r )  c u r v e s  w i t h  t h i s  p r o p c r t y  a r c  p l o t t c d  r n  F i g . 3 - 5 .  W h e n  r .  i s  s h o r t

[curve  ( l )  o i  F ig .  3 -5 ] ,  y ( t , . ru )  : / (0 ) ,  and f r  :  I : .  7 ( too)  i s  la rges t  fo r
curve  (2 ) -hencc  thc  max imum in  the  re laxa t ion  ra te  there ,  o r  the  ? l
min imum of  F ig .  3 -4 .  For  long r , ,  j ( log \  decreases  aga in  as  the  Larmor
frequency fal ls far out in the tai l  of j(o), accounting for the r ise in [  for
longer  r . .

Noth ing  in  Eq.  (3 -28)  exp la ins  the  cons tancy  o l  T ,  when r "  i s  longer  than
l l yhr .  A t  th is  po in t ,  the  theory  b reaks  down,  bu t  the  reason fo r  i t  and
the  rcsu l t  can  bc  sccn  in  f r ig .  3 -3 .  Thc  spcc t ru rn  f i r r  r r r  >  I  covers  on ly
the  range A( r r  i l s  thc  n toc lu la t ion  in r lcx  inc rcuses .  Thc  loca l  f ie ld  i s

e s s e n t i a l l y  s t a t i c .  I J n t l c r  l h c s c  c o n r l i t i o n s ,  t h c  1 ] l o e h  c q u l t i o r r s  a r e  n o t
v a l i d ,  t h e  l i n e  s h a p c  o l ' t h c  r c s o r n n c c ,  7 " ( r , r ) .  i s  r r o t  l . o r e  r r t z i u n .  W c  s h a l l
leave th is  case to  thc  ncx t  chaptc r .

log l(c,;)

F ig .  3 -5  ( l )  f ( - )  ve r sus  o ,  z .  l c ss  t l t a t t  < , , , ,  (  J  )  ' ,  t ' t 1 t t . t l  l "  " '
g rea te r  l han  oq  .
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3-5. SOME APPLICATIONS

eualitatively, the effect of rapid nuclear motion is to average out internal

fielis, or so the previous parts of this chapter would lead us to believe.

In fact. we must be very careful to make a distinction between internal

fields that can be averaged out and those that cannot. Equation (3-l)

gives the expression for the field at a vector distance r from a point dipole

Ha: -5*  rä ' (3 -1)

consider, for example, the z component of the field produced at the center

of a unit sphere by a dipole on the surface. If the dipole points in the z

direction, then

H " :  - p ( l  - 3 c o s 2 0 ) r - r

where g is the polar angle in the conventional spherical coordinate labeling.

If the dipole is allowed to roam over the surface of the sphere, the average

field at the center is

since (cos2 0> : + when averaged over the solid angle. The demonstra-

tion of the equivalent result for other components of Ho and arbitrary

orientation of p is tedious, and, in fact, unnecessary, but the result still

holds.
Another type of local field that can be reduced by rapid motion is the

inhomogeneity of the magnet. In this case, the inhomogeniety of 11, is
all that counts. Suppose, as is likely to be the case in the typical electro-
magnet, the inhomogeneity has cylindrical symmetry, and suppose the
maximum deviation from the average i1o is AI1. If a given nucleus can be
forced to sample the range of fields over the sample volume rapidly
enough, the total effect of the local field will be reduced according to
Eq. (3-a). The nuclei may be caused to sample the magnet's range of
fields by spinning the sample about an axis perpendicular to the field
direction. A typical geometry is shown in Fig. 3-6. To achiev. narrow-
ing, cer must be so large that the modulation index, m : (y AI{a-r), is less
than one. If each spin samples essentially the same magnetic fields
during each revolution, the frequency modulation produced by the spin-
ning is periodic, although probably not sinusoidal. Our original analysis
of frequency modulation is useful, though, and we see that the criterion
nr < I is sufficient to produce spinning sidebands which are farther away

!  l ' "  oo f"  ( r  -  3 cos2 e) s in o do: o
+ 7 4  J 0 = O  J A = O

Fig. !6 Spherical sample in an inhomogeneous field. sample is spun at
angular frequency co about an axis perpendicular to the page.

than y aH. For a typical f ield inhomogeneity of l0-a G, such as is
found in electromagnets made for chemistry applications, a spinning
frequency (., l2n) of a few cycles per second is sufficient. If turtulence
within the sample causes a given spin to sample the available fields in a
more random fashion, we require the width produced by the field inhomo-
geneity after narrowing to be comparable to, or less than, the natural
width. The requirement from Eq. (3-9) may be expressed

|  _ r  ( yLH) '
- 1 -

T2 fi o)

For typical hydrogenous liquids, where ?i -5 sec, and with a magnct
inhomogeneity of lO-a G, ro again must be a few cycles per second. That
spinning rate is easily achieved, and commercial apparatus is r.utrncry
supplied with sample spinning attachments.
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