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CHAPTER 1

Basic Principles

Historically, experimental investigations into the quantum properties of
angular momentum and magnetic moments followed the same course that
now seems to be the most natural in introducing the subject conceptually.
This first chapter is concerned with the concepts and the experiments on
isolated atomic systems with angular momentum, which began with the
molecular beam experiments of Stern in the 1920°s and which lead naturally
into the magnetic resonance experiments of Rabi in the 1930’s. The
material is probably familiar to all students with the background of an
introductory course in modern physics. However, it is recommended
that even students with confidence in their command of the subject study
the chapter, if only to identify special terminology and points of view relied
upon in later chapters. The student who finds the quantum mechanical
references of Section 1-4 somewhat obscure should repair to the brief
Appendix for some help, at least in the mathematical manipulations of the
quantum mechanics of the spin 4 system in magnetic fields.

1-1. DEFINITIONS

A system consisting of a mass undergoing circular motion about a fixed
point in a plane has angular momentum. 1f the mass carries electrical
charge, it has a ragnetic moment that is proportional to the angular
momentum. It is comforting to know that such simple statements are
true in general for quantum mechanical systems, and that, for magnetic
dipole moments, the proportionality factor is a scalar. The theorem
stating this is an application of a powerful and ubiquitous statement known
as the Wigner—Eckart theorem. We are concerned with angular momenta
of various atomic, nuclear, and elementary particle systems. Table 1-1
shows the conventional symbols used for most of the systems in which we
are interested. When the discussion is about an abstract angular momen-
tum vector, we usually use the vector symbol J, which serves also as the
total angular momentum of an atom.
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Table 1-1
Conventional Symbols for Angular Momenta
System Symbol
single electron spin S
electron orbit L
atom J=(L+8S)
nucleus I
atom including nucleus F=1+1J

We also find it convenient to consider the angular momentum vector
symbols to be dimensionless, and to display the units in which angular
momentum 1s measured explicitly. The fundamental unit is, of course,
h{2n = h, Planck’s constant. Thus, the Wigner-Eckart theorem states
simply

n=yhJ (1-1) .

where y, the gyromagnetic ratio (more rationally, the magnetogyric ratio)
is the scalar promised by the theorem. Now, if one pursues the example of
the opening paragraph, the factor y can be calculated immediately. The
angular momentum is |hJ| = |r x mv| = mr2w, where r is the orbit’s
radius, w the angular frequency, m the mass, and v the velocity. The
magnetic moment, in Gaussian units, is p =iA/c, where 4 = nir? is the
orbit’s area; the vector is perpendicular to the orbital plane, as in the case
of the angular momentum. Thus,

id inr? qor? Jhg
~der M (1-2)

c c 2c 2mc

If the particle is an electron with charge e = —4.8 x 1071° esu, and

mass m = 9.1 x 10728 g, the gyromagnetic ratio, y = e/2mc, is related to
the Bohr magneton:

eh
Bo =5 =hy = ~0.927 x 107%° ergs/G

For nuclei, it is convenient to define a nuclear Bohr Tmagneton

h —24
Ho = M 5.05 x 10 ergs/G

where M is the proton mass.
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Electrons, protons, neutrons, and g mesons have intrinsic angular
momentum. Atoms and nuclei of interest to us are compound systems,
the total angular momentum and magnetic moment of which are still
proportional by the Wigner-Eckart theorem, but the proportionality
factor of which depends on the details of the system. Those details are
conventionally absorbed into a g factor, or spectroscopic splitting factor.
This factor is g, , the Landé g factor for atoms, or g = 2.000.. ., according
to the Diracequation, for electrons and p mesons. We define the nuclear g
factor by analogy. For the most part, it remains an experimental parameter
characterizing nuclear moments, since, in most cases, nuclear theory is not
yet able to provide better than rough estimates of its magnitude. In
general, then, the expression

e

)hJ — 9Bod = 7.1
2me

B, = gl(

or (1-3)
mr=grpuol=ry,hl

gives the relation between p and J, or I, and it defines g. Equation (1-3)
also defines the gyromagnetic ratio y, which is now g(e/2mc) for a system
with intrinsic angular momentum (spin). Tables, particularly the most
commonly encountered tables of nuclear moments, publish a quantity
called *the magnetic moment in units of the Nuclear Bohr magneton.”
The maximum projection of J along any axis occurs for the state M, = J.
The magnetic moment is p; = gB, J, and the published number is gJ.

1-2. ENERGY IN AN EXTERNAL MAGNETIC FIELD:
SPATIAL QUANTIZATION

The energy E of a magnetic moment y in an external field' H is given by
the familiar expression

E=—-p-H (1-4)

or, in terms of the angular momentum,

E = —gBoHm, (1-5)

' In a vacuum it does not matter whether one uses H or B for the magnetic field if
the quantities are expressed in Gaussian units. Strictly speaking, one should use B,
bu't conventionally most of the literature uses H, a practice that we follow. Occasionally
it 1s important to make the distinction in solid state physics applications, and then it
1s well established that the correctly calculated B is to be used.
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Fig. 1-1 Energy-level diagram for spin of angular momentum J in magnetic
field H.

where m, is the projection of J on H. Quantum mechanics restricts my
to the 2J + 1 integral or half-integral values. The energy-level diagram
corresponding to Eq. (1-5) is shown in Fig. 1-1.

1-3.  STERN-GERLACH EXPERIMENT

The application of a magnetic field & removes the 2J + | degeneracy of
the magnetic sublevels, as we have seen. Although these states are no
longer degenerate, the energy differences between them are very small,
In a field of 10* G, Eq. (1-5) corresponds to an energy separation of | cm !
or about 10™* eV for electron moments, 10~* cm ! or 10 # eV for nuclear
moments. This energy difference must be perceived against a background
of 200 em™! or 0.025 eV of thermal energy at room temperature and
several electron volts of energy for atomic transitions. Until the early
1920’s, the consequences of spatial quantization had been manifested
primarily through the Zeeman effect and the Faraday and other magneto-
optic effects. The Zeeman effect was incompletely understood prior to the
discovery of electron spin, and the quantitative relation of spatial quantiza-
tion to the Faraday effect was obscure.

The reality of spatial quantization was demonstrated in a particularly
graphic fashion by the Stern—Gerlach experiment, successfully performed
in 1922, If a beam of neutral atoms passes through a homogeneous mag-
netic field, it is undeflected by that field, even though the magnetic de-
generacy is lifted. But if the field is not spatially homogeneous, there is a
net force on the moments in the beam that is given by the expression

oH oH oH
F=(u'V)H=#x~+uyE+#z—

-6
o e (1-6)
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There is a component of this force that is constant while the .-xfloment is
in the gradient, and it produces a deflection of the beam thataﬁlsl propor-
tional to u,. To see that, choose the following snmplgst poSmblF field
gradient. See Fig. 1-2. The beam travels in the x direction with the

z z
" idll/dz L T/( g
I || L t **l__j L ¢ Y
oven )
I e i
’ magnet ;T beam !
ector

collimating ¢
slits det

section ¢ — ¢’

(a) (b)

beam

(c) (d)

Fig. 1-2 Schematic representation of Stern#Gerlac'h apparatus. (a) Arrange-
ment of main components: oven, collimating slits, magnet, and 'detecto'r.
(b) Cross section ¢ — ¢’ of (a). (¢) Enlarged view ofibeam and magnetic ﬁ;lq ll’}
region of the beam. (d) Appearance of film deposited on substrate in origina
experiments of Stern.

field arranged so that H, = 0. The field is principall.y in the z direct?on.
All derivatives of } with respect to x vanish, and, in the beam region,
both V-H=0 and Vx H=0 are satisfied. The components of

Eq. (1-6) are

oH 8H, oH.  OH. (4

F. =0 F,=uyu, Yo, z = Hy ay"'“z oz

* ay dz
Furthermore, let the beam lie in the symmetry plane y =0, where
H,=0 (Fig. 1-2c). Then 0H,/dz =0, and, since Vx H=0, 0H,/dy =

(H,/0z=0. Since V-H =0, 0H,/0y = —0H, [0z, Eq. (1-7) reduces to

5HZ é}1-12 _8
Fo=0  F,=—u,— Fo=p:— (1-8)

X
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In the next section, we emphasize in great detail that the magnitude of
the field H, produces a torque p x H, causing a precession about H (which
is virtually entirely H, at the beam coordinate) such that 4, is constant and
u, oscillates about an average value of zero. So the oply comp.onent of
the force that produces a net deflection is in the z direction, and it may be
written in terms of the magnetic quantum number as F, = m; gfi,(¢H,/0z).
The presence of m, means that the beam splits into 2/ + 1 components.
The first experiment was done on silver (partly because the deposit
could be easily *“ developed "), and two components were seen, as illustrated
in Fig. 1-2d.? We now know that 2J+1=2 requires J=1,
and that the ground state of the silver atom is an orbital S state with a
single electron of spin 4. The first experiment was done prior to the
discovery of electron spin, but the result was not interpreted as requiring
half-integral spin since it was assumed silver had an orbital angular
momentum L = 1 and the m, = 0 state was not allowed in old quantum
theory.

Even in its simplest form the experiment has several components, none
trivial, so that molecular beam experiments have long been known as the
most difficult in atomic physics. The experimental problems to be
solved include a high enough vacuum so that a typical beam atom can
traverse the apparatus without colliding with a residual gas molecule in a
meter or more of flight. The source, usually an oven with a small hole,
must produce a well-collimated beam. The field gradient must be as
large as possible, but the magnetic field itself cannot change too abruptly
in time as sensed by the moving magnetic moment that passes from the
fieldfree region to a region of maximum field gradient, and then out again
to a fieldfree region before striking the detector. Finally, some device
must detect, with considerable spatial resolution, the beam intensity. The
modern solution of these problems is discussed in detail in the definitive
monograph on molecular beams by Ramsey [2]. A somewhat briefer
discussion appears in another standard reference in the field of magnetic
resonance, Kopfermann’s Nuclear Moments [3]. Among the refinements
particularly useful when two Stern-Gerlach apparatuses are put in series
for the standard molecular beam resonance experiment (Section 1-4) have
been velocity selectors between the oven and the field region so all mole-
cules in the beam receive the same deflection. Sophisticated universal
detectors, which partiaily ionize the beam and send it through a simple
mass spectrometer before it registers on the ultimate detector, have also

2 The student will find it an amusing exercise in the propagation of errors to watch
for illustrations such as Fig. 1-2 in which the beam is traveling in the y direction, trans-
verse to the long dimension of the apparatus. As far as I can determine, the first such
incorrect illustration appeared in A. Sommerfeld’s Arombau und Spectrallinien [1], in
all editions subsequent to 1923. It is reproduced in many texts of that school, but it
also still appears in texts published in the United States as recently as 1967.
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been developed. (See references listed at the end of the chapter for more
discussion of experimental techniques.)

The Stern—Gerlach technique, by itself, reached its pinnacle of usefulness
under the direction of Stern, particularly with the aid of Otto Frisch and
I. Estermann. Although the resonance method of Rabi did prove to offer
unheard of precision compared to the nonresonant experiments, the
basic technique did provide a few triumphs beyond the first demonstration
of spatial quantization. One of these was the discovery of the anomalous
g factor of the proton (i.e., that g, = 5.59 ... rather than g = 2.000...,
as expected from the Dirac theory of a spin 4 particle). The initial report
of this work appeared in Nature in 1933 [4], and it is a model of elegant
brevity. The student who understands it, sentence by sentence, has a
good working grasp of many of the necessary fundamentals of modern
physics.

It should be emphasized that the Stern-Gerlach apparatus is a very
useful practical example of a quantum mechanical state selector, or beam
polarizer. The separated beams of moments of that energy from the
field gradient region, each characterized by its own m,, are polarized.
The apparatus may be reversed in function and a partially or fully polarized
beam sent in. Its trajectory in the apparatus is determined by the state
function (i.e., the m; level) of the constituents of the beam, so the apparatus
now functions as an analyzer. These functions are important to under-
stand and distinguish in following the magnetic resonance experiment of
Rabi. A comprehensive discussion is given in volume 3 of the Feynman
Lectures on Physics [5].

1-4. THE RABI MAGNETIC RESONANCE EXPERIMENT

If a Stern-Gerlach apparatus can be a state selector, it can also be an
analyzer. What could be more natural than to put two of them in series,
with some experiment in between? In the 1930’s, Rabi, who had done
postdoctoral work under Stern at Hamburg, performed the first magnetic
resonance experiment and made the first precision nuclear magnetic
moment measurement, in a homogeneous magnetic field between a
polarizer and analyzer. Figure 1-3 shows two inhomogeneous fields,
produced by the conventionally designated 4 and B magnets, with the
homogeneous C magnet between them. In the C region, the magnetic
resonance experiment causes transitions between magnetic quantum
levels. Consider a J =4 system. Figure 1-3 shows the polarizer and
analyzer with field gradients in the same direction. Also, care is taken
that the direction of the field H itself always points in the same direction.
At theend of the polarizer, one of the two separated beams may be deflected
or stopped by a baffle, leaving a beam of pure m, = 1 particles, for instance,
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Hy dH 4 /dz He Hy ditygldz

ot

‘ -
I - -
| I ——”
beam R
| detector
A magnet C magnet B magnet

Fig. 1-3 Fijelds and beam trajectories in Rabi resonance experiment. The
solid curved line is a greatly exaggerated trajectory for a spin 4 system that
undergoes a;transition from m, = } to m, = — } in the resonance region R in the
homogeneous C magnet. The dotted line in the B magnet represents the path of
a molecule that does not undergo a transition and is prevented by the baffle
from reaching the detector.

to enter the C magnet. If nothing is done to them there, they enter the
second Stern—Gerlach apparatus where they are further deflected. If the
detector is placed to detect a beam that comes through undeviated, it will
detect no signal. If the beam in the C region is manipulated so that some
or all of the moments are put into the m; = — 4 state, then in the B field
their deflection will be down, and, if the 4 and B magnets are identical,
then the B magnet will reverse the deflection produced by the 4 magnet,
and the beam will hit the detector.

Some of the preceding details are arbitrary and of no particular im-
portance. The experiment as described is known in the molecular beam
trade as a ** flop-in "’ experiment: the change of state in the C region causes
the beam to “ flop-in "’ to the detector. A different position of the detector,
or reversal of the gradient in the B region, could result in a “flop-out™
experiment. What is not unimportant is the maintenance of a magnetic
field oriented in the same direction through the apparatus, or, if the field
does reorlent, it must do so slowly, as seen by the moment as it moves
through the various regions. The first restriction is required so that the
beam remains in the same quantum mechanical state unless a transition
to another state is deliberately produced in the C region. The second

restriction is required so that no ‘““accidental” transitions occur between
magnets.
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We turn now to the theory of the magnetic resonance experiment. The
quantum mechanical and classical equations of motion of a spin in a
magnetic field are identical: the latter equations are for classical angular
momenta and magnetic moments; the former are for expectation values
of angular momentum operators. It is often sufficient to consider only
the classical case. Figure 1-4 shows an angular momentum J, moment p,

Fig. 1-4 Magnetic moment p = yAJ precessing in a constant field H,. The
figure is drawn for positive y.

inclined at an arbitrary angle with respect to the z axis, the ficld direction.
The classical equation of motion is
hZ—f:uxH(,:thxHo (1-9)

The change in J during dt, dJ = yhJ x H, dt, is perpendicular to the plane
defined by the vectors J and Hy. The motion is a precession, with J
defining a cone with the axis H,. The angle between J and H,, remains
constant. The precession frequency, w, = yH,, is known as the Larmor
frequency.

In the molecular beam resonance method, H, is a spatially homogencous
field produced by the C magnet. In addition, a transverse alternating
field H,(z) is applied at frequency w in the C magnet region.

H,(t) = 2iH, cos w? (1-10)
In the presence of the alternating field, the equation of motion is

%:ny(RHo+i2choswt) (1-11)
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The problem is to find J(r). Approximate solution to (1-11) can be
obtained easily by transforming to an appropriate rotating coordinate
system. There is a theorem, proven in all classical mechanics courses,
to the effect that the time derivative of J as viewed from a rotating
coordinate system, 8J/0¢, is related to dJ/dt, the time derivative as viewed
from a stationary coordinate system, by the expression

aJ o3
dJ _oJ 112
ar " texd (1-12)

where o is a vector whose magnitude gives the angular frequency of
rotation of the rotating system and whose direction is the axis about
which the system rotates. Some necessary insight is obtained by sub-
stituting (1-12) into (1-9):

aJ
— xJ=yIxH
at+°’ Y o
or (1-13)
aJ
— =yJ H —
a7 x( oF )

That is, as far as the rate of change of J is concerned, transforming to a
rotating reference system at o is the same as adding an effective field
/y, and considering the motion in the effective field

.

(O]
H. ¢ =H, + ; (1-14)

It follows immediately that J is time independent in a rotating coordinate
system such that Hz =0, or @ = —yH,. The result, and the trans-
formation, are intuitive for this case. The sense of rotation of J, as seen
in the laboratory (i.e., stationary) frame in Fig. 1-4, is just the sense of
rotation of the rotating coordinate system necessary to ‘“ stop "’ the motion.

The solution of the problem with alternating (or, conventionally, radio
frequency or rf) field, Eq. (1-11), can be obtained from the rotating co-
ordinate transformation after observing the following: decompose H,(r)
into two circularly polarized components of equal amplitude rotating in
opposite directions in the xy plane.

H,()=H, + H, (1-15)
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where

H, = H,(i cos wt + § sin wt)

and
H, = H,(i cos wt — j sin wt) (1-16)

Simple inspection shows that H, is rotating in the same sense as the
moment in Fig. 1-4, and H, in the opposite sense. A rotating coordinate
transformation to a system defined by @ = kw leaves the field H, stationary
in the transformed system, but the component rotating in the opposite
sense rotates at 2w in the rotating coordinate system. To see that we
may neglect H, under most circumstances, examine the effect of H, alone.
Figure 1-5 shows the fields H, and H, as they appear in the rotating system

z

)
Ho— (w/mk
effl
0
X
H,
Fig. 1-5 Fields and angles in the coordinate system rotating at w = —kw.

in which H, appears stationary, that is, the rotating system defined by the
transformation @ = —ko.

The effective field in the z direction is k(H, — w/y) from Eq. (1-14).
The total effective field is given by

H,, = R(Ho - %) +1iH, (1-17)
The angle 6 is defined by

tan 0 = ————— 1-18
Hy, — wfy ( )
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The motion of a magnetic moment initially along the z direction consists,
in the rotating system, of precession about H g with an angular frequency
w.g = yH g with the angle 6 constant. That is, the vector p precesses on
the surface of a cone having angle 8 and axis H4.

A brief digression from the main line of the development is necessary
to dispose of the counterrotating component H,. The fields we have
considered produce their effect by virtue of being static in the rotating
frame. H, rotates at 2w in that frame, 'vhich means that whereas it acts
to produce the same general effect as H, when it is approximately parallel
to it, it produces the opposite effect at a time n/2w later, when it is directed
opposite to H,. On the average, we expect its effect to be zero. This
result has several consequences. First, it is only necessary to apply a
linearly polarized rf field in the C region, for we shall be certain, regardless
of the algebraic sign of y, that one of the rotating components will produce
some precession of the moment away from the z direction. We arbitrarily
chose the magnitude of the linearly polarized field to be 2H,, so that the
rotating component’s amplitude would be the conventional H,. We
could have applied a circularly polarized rf field, and that procedure is the
one commonly used to determine the sign of y.

The arguments we have used to dispose of the counterrotating com-
ponent were qualitative ones. Quantitatively, the neglect of the counter-
rotating component is valid only if (H,/H,) < |. FExperiments have been
done in fields for which this inequality is not well obeyed. The result is
a shift in the radio frequency that produces the maximum effect in tipping
the moment to the —z direction. It goes by the name ** Bloch-Siegert
shift.”

For future work, it is important to notice here the obvious fact that as
the moment begins to precess around H,g, it acquires a component in
the xy plane. In the laboratory frame, that component is rotating at the
angular frequency w. To make the connection with the magnetic res-
onance experiment done in the C-field region, between two Stern—-Gerlach
apparatuses, we must discuss transitions between m, states, something the
preceding discussion of a classical moment seemingly contains no hint of.
Let us specialize the discussion to the case of a spin 4 system. The orienta-
tion of the classical moment along the z direction is related to the prob-
ability that the spin is in the +4 or —4 m, state. If the spin wave function
is [x> = al})> + b|— 1), then P(}), the probability the spin is in the |4
state, is |[<3|x>|* = la|* and P(—%) = |<—4IxD1* = |b|*. We consider the
function,

cosa = |a|? — |b)? O<a<m (1-19)

with the subsidiary normalizing condition that |a|* + |b|> =1 (there is
certainty of finding the spin in one or the other of the states). The function
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cos o has, in fact, the properties of the projection of the spin on the z axis,
and it is through cos o that we make the connection to the classical cal-
culation. Again, defining cos « = p * Hy/|u||H,|, we find, after some
three-dimensional geometry,

2 YH gt

cosa =1 —2sin? Osin (1-20)

where we assumed the boundary condition o« =0 at ¢ = 0. Using the
normalizing condition |a|® + |b|? = 1, we can also write (1-19) as

cosa =1 —2|b? (1-21)

Comparison of (1-20) and (1-21) yields immediately
H et
P(~14) = |b]? = sin? 0 sin? VT” (1-22)

for the probability that, at time 1, the spin is in the state m, = — 4, having
started in state m; = } at t = 0.

Equation (1-22) checks the result obtained by inspection of Fig. 1-4;
namely, that for § = 90°, the spin precesses to the —z direction in a time
t=njw.g = n/yH . Of course, § = 90° corresponds to the condition of
exact resonance,

w = wy = yH, (1-23)

It is clear from (1-21) and (1-22) that the probability of a spin being
in either of the m; = +} states varies periodically, with a full cycle com-
pleted with angular frequency yH .. What is less clear, since we have not
done a full quantum mechanical treatment but have only made a plausible
connection to quantum mechanics, is that the amplitudes a(¢) and b(¢) of
the m; = +4 and m, = —} states, respectively, vary in time in a coherent
fashion. The significance of that statement is that the transverse com-
ponents of angular momentum operators, J, and J,, have nonzero but
time dependent values. For our future discussion of transient methods
in magnetic resonance, as well as the discussion of the Ramsey modification
of the molecular beam resonance method, it is most interesting to imagine
doing the experiment at exact resonance (sin = 1), and turning off H,
when w.qy = n/2. Then P4) = P(—4) = 4. In the rotating frame, the
amplitudes @ and & are constant and equal in magnitude (but, since they
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are complex, not necessarily equal in phase). We can write the spin
wave function JyD> tobe [x> = 2) V2 [|4)> + e** | —1)>]. Theexpectation
value of J, is, if we suppress the time dependence from the Larmor pre-
cession,

o> =< + e (=4I + e =]
=3[Vl —$de® + (~1I/,14) 7] (1-24)

_cos¢
T2

where ¢ is the phase difference between a and ». It would, in fact, be
zero for the example we have used. The important point is that, just as
in the classical case, the angular momentum has been turned over toward
the xy plane. Viewed in the laboratory frame, it is precessing at wg,
and will continue to do so indefinitely with the same phase as long as nothing
perturbs it. The point to emphasize is that the transverse components
of J, J, and J,, arise from coherent linear superpositions of state functions
of the various m, states. Later, when we deal with ensembles of spins,
the question of the relative coherence of the superposition from one spin
to the next will be crucial.

The Rabi molecular beam magnetic resonance experiment is done by
applying a transverse rf magnetic field in the C magnet. The original,
and still common, method of applying the rf field is by means of the
“hairpin,” shown in Fig. 1-6. The intensity of the beam at the detector
is monitored as a function of the radio frequency w. A typical intensity
I(w) versus frequency curve has the bell-shaped appearance of Fig. 1-7,

H,

}lairpin
\ /
At
beam

Fig. 1-6 The * hairpin,” a method of applying the rf field in the C magnet of a
resonance experiment.
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(W)

Aw

|

Wo

Fig. 1-7 Beam intensity at the detector as a function of the frequency of the rf
field in the C magnet.

which has been drawn for a hypothetical ““ flop-out” experiment. The
exact shape of the curve is of no particular interest to us, but there is
something to be learned by examining the origins of its width, Aw. Since
the first object of a beam resonance experiment is to find w, , it is important
to make Aw as small as possible. Experimentalists sometimes use the
rule of thumb that the frequency w, can be located to within Aw divided
by the signal-to-noise ratio. (Of course, we showed no noise in Fig. 1-7,
but it is inevitably there in experimental data.) In the natural effort to
make the signal as large as possible, to obtain the optimum * flop-out,” the
experimenter adjusts the magnitude of H, so that, in language appropriate
to aJ = § system, the opposite spin state has the largest possible amplitude
at = w,. From Eq. (1-22), that occurs when yH,t = n. The time ¢
here is the time of flight of the moment through the hairpin. Approxi-
mately half the amplitude of the signal occurs when w is such that P(3) =
P(—4)=14. We assume ¢ and H, are fixed by the criterion H,z = n/y.
Then the half-maximum intensity occurs for cos @ = 0 in Egs. (1-20) or
(1-21), or P(—4) = |b|* = % in (1-22). We leave it as an exercise for the
reader—an exercise involving primarily the solution of a transcendental
equation—to show that P(4) = P(—4)=4 when H_; =1.275H,, or
6 =51.5°, and (H, — w/y) = 0.8H,. It follows that the full width at
half-maximum intensity, the Aw of Fig. 1-7, is Aw = 1.6yH,. Whenitis
coupled with the other requirement, which we have expressed as yH,t = =,
we obtain

Awt = 1.6z (1-25)
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Equation (1-25) looks very much like the uncertainty principle, which
relates the precision with which the energy may be established to the time
over which the measurement is made. That is exactly what Eq. (1-25) is,
for ¢ is the time during which the system is in the probing field H,. Correct
use of the uncertainty principle argument would have obviated the some-
what tedious calculation of the line width, but the effort was worthwhile
since it was instructive.

To achieve greater precision, the experimenter must increase ¢, the time
in the apparatus. That goal can be accomplished by selecting the slowest
molecules coming from the oven—but with the certain result of a loss in
intensity—and also by increasing the length in the beam direction of the
C-field magnet and the hairpin. The limitation in Aw, soon reached, is
not from the preceding considerations, but rather from the inhomogeneity
of the C field. The larger the magnet the harder it is to produce one with
a homogeneity of field that is less than the natural limitations of Eq. (1-25).
To overcome this limitation, Ramsey devised a very beautiful technique,
which we examine briefly for its own sake and for what it can contribute
to the understanding of later magnetic resonance experiments.

Consider a monochromatic beam (i.e., constant velocity v) so that each
molecule in the beam spends the same time in the hairpin. Ramsey split
the hairpin into two parts, both driven by an rf oscillator such that the
phase of the rf field is the same in each. They are both in the C magnet,
but situated at opposite extremities of the homogeneous field. Figure 1-8

hairpin hairpin
H,
beam

— -
|

C magnet

Fig. 1-8 Ramsey split rf field experiment.
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shows the arrangement and defines some of the quantities we need. The
length L is much greater than /. The latter is adjusted so that yH,1, = n/2,
where ¢, =//v. If the beam enters the hairpin in the m; =} state, it
leaves in an equal admixture of m; = 4 and —1 states, with phase co-
herence in the admixture. That is, the angular momentum is in the
transverse plane and precesses freely about H, at w = yH,. In the time
t, = L/v it takes for the beam to reach the other hairpin, it precesses an
angle @ in the xv plane. We define the average field H, and the average
frequency @, by the relation

O =yt =yHyt, (1-26)

The average H, is a spatial average of the fields that the beam sees. (We
have assumed for simplicity that the beam has zero transverse dimensions,
so that each moment in the beam samples the same f{,.) Adjust the
frequency of the oscillator driving the hairpins to be exactly . Then
the rf phase of H, at the second hairpin is the same as the phase of the
transverse component of J: that s, they have the same spatial orientation,
so that in the frame rotating at os, the moment continues the precession
from the +z to the - = direction that it started in the first haurpim

Figure 1-9 ilfustrates the precessions schematically i the rotating refer-
ence system. The extent of the improvement of this techmgue over the
single rf field region method can be estimated by the appropriate un-
certainty principle argument. The line width Awy .., would have to obey

AWgamsey L = 21 (1-27)

by analogy with (1-25). Hence, AWpameey/ AWconvenuionar -~ i1 11 1o
see that ¢, is indeed the appropriate * measurement time ™ (o mnsert i an
uncertainty principle argument, examine what happens when the radio
frequency is not quite m,, but is w, + Awg. We now detine Ay pre-
cisely by noting, as suggested in Fig. 1-9b, that if, during the tme 7, the
rf oscillator accumulates phase @ + 7, then the H; seen by the spins i the
second hairpin is in the — 1 direction in the frame rotating at «,, . The
precession of the spins about that field undoes the work of the first hairpm,
so the spins precess up to the +z direction again. If precession to the
—z direction gives a maximum at the detector, then this sccond cise
corresponds to an absolute minimum in the signal. The rf oscillator
frequency corresponding to this minimum signal is just

(Wo + Aw)t, =® £ = (1-2%)
or

Awg = +n/t;
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)
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) (d)

(e)

Fig. 1-9 Rotating frame precession of the magnetic moment in the Ramsey
split rf field experiment. (a) Precession in the first hairpin. (b) Average
orientation of J between hairpins. (c) Motion in second hairpin. (d), (e), and
(f) Same as (a), (b), and (c) except for reversal of rf phase at second hairpin.
See text.
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The full width between the minima is Awg = +2n/t,. Although
Awpg calculated this way is almost the same as the “blind’* extension
of (1-25), not too much should be made of the fact since different quantities
are being calculated, which depend in detail on the shape of the resonance
line. The shape of a Ramsey curve for a ““flop-in”’ experiment is shown
in Fig. 1-10. The width Aw is roughly the width obtained if the split
rf fields are put together.

I(w)

Fig. 1-10 Detector intensity as a function of frequency for the Ramsey
experiment.

1-5. APPLICATIONS AND LITERATURE SURVEY

For precision measurements of magnetic moments, the simple Stern—
Gerlach apparatus was almost totally eclipsed by resonance methods.
The molecular beam techniques by themselves have been used, however,
in some important investigations. One of the most obvious is the in-
vestigation of the velocity distribution of the beam emitted from the hole
of an oven at temperature 7. The last publication by Stern before his
retirement was an investigation of this subject, which, incidentally, was
the topic that prompted his interest in molecular beams in the first place.
In the paper by Estermann et al. [6], the analysis of the velocities of the
molecules is done by measuring their fall, or downward deflection, in the
earth’s gravitational field! One rarely encounters any practical conse-
quence of an atomic particle’s gravitational mass in laboratory atomic
physics.

The combined Stern-Gerlach and magnetic resonance experiments of
Rabi gave the first precise measurements of nuclear moments, and they
are still used for this purpose, particularly, in recent years, to measure
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nuclear moments of radioactive nuclei. The number of applications is
so large as to defy even reasonable enumeration. The student would be
advised to read the elementary review articles of Frisch [7] and of
Kusch [8], as well as to look into some of the comprehensive tomes, such
as Ramsey [l]. Reading the original literature in this field provides a
palatable introduction to scientific literature in journal form. Much of
it appeared in the 1930’s, when brevity to the point of total obscurity was
not yet the hallmark of most papers in contemporary journals. The first
comprehensive discussion by Rabi er al. [9] of the molecular beam,
magnetic resonance method, and the first measurement of the anomalous
moment of the electron [10] both are relatively readable by upper-division
students with vector-model type command of atomic physics. Some
further applications of particular importance will be discussed in
Chapter 6.

I cannot resist concluding this chapter by remarking on the central
position occupied by the Stern-Gerlach experiment in modern quantum
physics. The reason seems not to be any particular uniqueness or pro-
fundity of the technique, but rather the simplicity of the technique as an
example of the problem of state preparation in quantum mechanics. It
serves not only as a favorite pedagogical vehicle (see Feynman, vol. 3 [5h
but also as a source of ** gedanken experiments for weighty discussion of
such vexing questions as the problem of measurement in quantum mech-
anics. For an example of the latter, see Wigner, Symmetries and Re-
flections [11], particularly p. 160, where the student should experience a
shock of recognition if he has read footnote 2. There is no doubt that
the Stern—Gerlach experiment, and the Rabi resonance experiment,
represent the most elegant, simple, and yet most profound physics
experiments of our century.

Problems

1-1. (a) Calculate the vacuum required (in mm Hg) for an atomic beam experi-
ment if the distance from oven to detector is 1 m. Express the result
in terms of the cross section o for collision between a beam atom and a
molecule of residual gas. Assume that ¢ =10-!'5 ¢m? to obtain a
quantitative answer.

(b) The atoms in the beam emitted from the oven do not have the same
velocity distribution as the atoms in the oven. Show that the beam
atoms have a velocity distribution proportional to v? exp[ - 3mv?/2kT),
where v is the velocity, m is the atomic mass, k = 1.38 x 10~ !¢ ergs’K
is Boltzmann’s constant, and 7 is the absolute temperature. Find the
most probable velocity and the velocities », and v, such that half the
atoms in the beam have velocities between v, and v,. Let 7 — 500°K.

1-2.

1-3.

Snbhwn

© %0 N o

1.

12.
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(c) Assume the field gradient in the magnet is 103 G/cm, and that the
magnet is 40 cm long. Assume further that the detector is 50 cm
beyond the end of the field gradient region. Find the separation of
the two beams of silver atoms for the atoms with the most probable
velocity in the beam. Assume T = 500°K, and that the width of each
beam is as determined in part (b).

Let the hairpin of Fig. 1-6 be 10 cm long, the separation between the
wires 3 mm, and the wires 1 mm in diameter. Find the rf current in the
wires necessary to produce a transition from the my;=+4%to my=—4%
state of the ground state of silver for a beam atom of velocity 10* ¢cm/sec.
What is the width of a resonance line in an apparatus operated under these
conditions ?

How far below line of sight does a cesium atom of most probable velocity
fall in a 2-m horizontal atomic beam apparatus if the oven temperature is
100°C?

In our discussion of the Ramsey split field modification of the molecular
beam resonance experiment, we assumed the beam molecules to have a
single velocity. Discuss qualitatively the consequences to the line shape
(Fig. 1-10) if the beam is not monochromatic. Do not forget there are two
transit times that may have somewhat different consequences: the time
spent in the constant field region between the split rf fields, and the time
spent in the rf field region.
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CHAPTER 2

Macroscopic Properties
of Nuclear Magnetism

The enormous expansion of the basic ideas of the magnetic resonance
technique beyond the molecular beam experiments occurred when it was
learned how to do experiments on macroscopic quantities of magnetic
moments as found in solids and liquids. There is a considerable difference
between flipping an isolated spin from up to down in a molecular beam
experiment and doing the analogous thing all at once on 1022 spins in
punderable matter. We introduce in this chapter the statistical mechanical
steps necessary to describe macroscopic magnetization and its interaction
with external electromagnetic fields and with the material in which it is
imbedded. The important new idea will be the concept of complex
susceptibility, and the practical achievement will be the Bloch equations
for the behavior of nuclear magnetism in liquids and some discussion of
the apparatus of nuclear magnetic resonance.

2-1. THE EQUILIBRIUM DISTRIBUTION

Chapter 1 has described the basic technique for producing transitions
between m, states of isolated spins. The applications of magnetic
resonance in chemistry and solid state physics are based on those methods,
but they employ different concepts to produce polarization and to detect
the resonance. In this section we shall set forth the basic considerations
that govern the relative populations of the different my levels when a
large number of identical magnetic moments interact with a heat reservoir
(usually called a “lattice,” even when the moments are in a liquid or a
gas). We shall be able to make some very general statements about the
way thermal equilibrium is attained, and we shall also derive a few of the
macroscopic magnetic properties of the sample, such as its magnetization
and magnetic, or Zeeman, energy.

For convenience, we discuss nuclear magnetic moments, which can be
nuclei of atoms in a solid, a liquid, or a gas. Much of the discussion will
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apply also to electron paramagnets, but they have some properties that
present complications requiring rather more specialized discussion, for
which we refer the reader to Pake [1]. In the beginning, we further
idealize the system of interest by assuming we can neglect the interaction
of the moments with each other. We also make a more significant
approximation that renders irrelevant the “ statistics”’ of the particles—
whether Bose-Einstein or Fermi-Dirac—by requiring the density of the
system to be low enough to allow the use of Maxwell-Boltzmann statistics.
As a result, we specifically exclude from consideration in this chapter
conduction electrons in metals or in liquid *He at low temperatures. Both
systems require the Fermi-Dirac distribution function at low temperatures.
Otherwise, for nuclei, the density of ordinary solid matter is easily small
enough to allow the Boltzmann distribution to be valid. )

We start as simply as possible. Consider N spin 4 nuclei jin a magnetic
field Hy, applied in the traditional z direction. The population of the
m; = t+4% states are N, and N_, with N, + N_=N. Now the nuclei,
whether in solid, liquid, or gas, have translational degrees of freedom—
kinetic and potential energy. Call these degrees of freedom the lattice.
Let the lattice be homogeneous; characterize it by a single constant
temperature 7. Our only other assumption about the lattice is that its
heat capacity is large compared with the magnetic energy of interaction
of the nuclear moments with the magnetic field. For low temperatures
and high fields, this assumption is, in practice, rather restrictive, and the
theory developed here must be redone to treat that case. Just how low a
temperature and how high a field will be the subject of a problem.
Figure 2-1 shows the energy-level diagram and helps define relevant
quantities.

The Zeeman energy of each spin is

E= —yhHym, (2-D

If y >0, the m; = —1 state is higher in energy. To say anything more,
we must assume that the spin system (i.e., the totality of N spins, each

3
"
|

N_

ni-

ThH,

ml=+% N,

Fig. 2-1 Energy levels of a spin 4 in a magnetic field H,. Energy levels
are ordered for y > 0.
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interacting with the field H,) can exchange energy with the lattice. We
need not specify the mechanism to make general statements about some
of its properties. The lattice must be regarded as a quantum mechanical
system with states we label by Greek letters «, f8, ... . The states are to
be thought of as simple harmonic oscillator levels for atoms bound in a
solid. The relative occupation of two levels o and 8 of energy E, and E;
is proportional to exp[(E; — E,)/kT]. If the lattice energy consists of
the kinetic energy of translation in a gas, for example, then the energies
E, and Ej refer to the kinetic energy, and the preceding expression is
Boltzmann’s generalization of the Maxwell velocity distribution.  The
combined system can be labeled in terms of populations of the various
states of the subsystems. The populations are specified by (N, N_;
Ny, Ng,...). Since the combined systems, Zeeman plus lattice, are
assumed isolated from the rest of the universe, an increase in Zeeman
energy must be accompanied by an equal decrease in lattice energy.
Figure 2-2 shows two lattice state populations that differ by the Zeeman

? N Ny . N_—1 Ng+1

YhiH,

Ny Ny S N —— N

state (1) state (2)

Fig. 2-2 Energy levels for system of spin 4 and a pair of lattice levels with
same energy difference. States (1) and (2) of the combined system have the same
energy.

energy hyH,, and it indicates schematically two populations of the com-
bined system that have the same energy. Part (1) has the higher Zeeman
energy of the two; (2) has the higher lattice energy. We postulate that
there is a rate process, determined by a transition rate W, which connects
pairs of states the Zeeman populations of which differ by one spin being
turned over. We write the following equations for the time rate of change
of the spin populations:

dN,
dt

=-=N, W+ ->-)+N_W(- > +) (2-2)

and
dN _ dN .,

dt dt

(2-3)
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since N, + N_ = N. Remember that the transition rate W(+ — —), for
example, involves implicitly a transition from (2) to (1) of Fig. 2-2,
including the redistribution of lattice-level populations.

The thermal equilibrium condition is dN,/dt =0, from which we
conclude that

N.° W(- - +)

N W+ - —) -4

where the superscripts indicate thermal equilibrium. On the other hand,
the total number of transitions per second of the entire system from (1)
to (2) is given by

trans/sec from (1) to 2Q)=N_Nyw 2-5)

where w is a quantum mechanical transition probability involving only
the squares of matrix elements, densities of states, and constants. The
imp-ort of the consitution of w is that it is microscopically reversible; w
appears in the equivalent expression for the total number of transitions
per second from (2) to (1):

trans/sec from (2) to (1) = N, N, w (2-6)

In thermal equilibrium, the quantities calculated in (2-5) and (2-6) are
equal, from which we conclude

P4
o
P4

+

ﬂ -
. (2-7)

z
S

That is, the Zeeman state population ratio is the same as the population
ratio of any pair of lattice states separated by the Zeeman energy. This
latter ratio is, except for the case of very low temperatures alluded to
earlier,

Ny _ exp(—E;z/kT) —ex —(E; — E,) (2-8)
N, exp(—EJkT) kT
From Egs. (2-1), (2-7), and (2-8), and from Fig. (2-2), we have
N,° —(E, —E.) +yhH,
N+° = exp ( Jl;T = exp ZT g (2-9)
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That is, the lower energy level of the spin system, m; = + i, is more highly
occupied in thermal equilibrium. Moreover, from Eq. (2-3) we get

(2-10)

Downward transitions are more probable; indeed, you can look at
Eq. (2-10) as providing the mechanism whereby the equilibrium population
ratio (2-9) is produced and maintained.

We may now return to (2-3) and talk about the approach to equilibrium
from a nonequilibrium initial condition. Define the population difference

n=N, — N_ 2-11)
and rewrite N, and N_ in terms of n and N:
N, =4N+n) (2-12a)

N_ =3(N = n) (2-12b)

In terms of N and n, Eq. (2-3) becomes

dn
G0 = NIW(= = ) = W+ = )] = n[W(+ = =) + W(— - +)]
(2-13)
or, by factoring out [W(+ - —) + W(~ — +)1,
dn ny—n
E=‘Tl (2-19)
where
N (e
o W+ > )+ W(- > +) (2-15)
and
1
?-=W(+—>—)+W(——»+) (2-16)
1

where n, is the equilibrium population difference, as substitution of (2-10)
and (2-11) into (2-15) will verify:

e
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yhH

W(+ — exptyht RT) — 17 _
] 2kT

=N —— — =N tanh(
Mo W(+ — —)lexplhil, b Ty + 1

) (2-17)
The time T, defined by (2-16), is the spin lattice relaxation time; it is the
time constant of the approach of the spin system to thermal equilibrium
with the lattice. If (2-14) is solved with n(0) 0 as the imtial condition,
as would be the case if the field were switched on suddenly at r 0 after
having always been zero before, we find that

n = ny[1 — exp(—¢/T})]

It is appropriate at this point to put in perspective what we have been
doing, and perhaps even allow a glimpse of a skeleton in a closet.
Equations (2-3), (2-5), and (2-6) are examples of the principle of detailed
balance, which was first used by Einstein in his 1916 rederivation of the
Planck radiation formula. Given Eq. (2-2), which is also known as a
master equation, the irreversibility of the approach to equibbrium is
already determined, even though (2-2) makes explicit use of the micro-
scopically reversible quantum mechanical transition probability w,
introduced in Eq. (2-5). The justification, or, if you wish, derivation of
the master equation is the central problem of noncquilibrium statistical
mechanics. Magnetic resonance experiments on nuclear spin systems in
solids and liquids have in recent years provided interesting and tractable
model systems for which specific derivations of equations such as Fq. (2-3)
could be tested, and the limitations understood.

Although it is rather far afield from our main purpose, something more
than the preceding mysterious remarks can be made with regard to the
origin of the irreversibility. In terms of the coefficients @ and b introduced
in Chapter 1 for the spin wave functions |x> = a|3> + b — 4>, it is clear
that (2-2) is an equation in |a|? and |b|2, since the probability of occupation
of a given stage for a single spin is essentially (1/N) times the occupation
of that state in the ensemble of N identical spins. The information that
is missing is the relative phase of the |[4) and |—1) states, which, if we
remember Chapter 1, is related to the transverse component of the
magnetic moment. In equilibrium there is no transverse macroscopic
magnetic moment, not even a coherent alternating one. From that, we
reason backward to the conclusion that the relative phase of the m, i
states from spin to spin must be a random quantity, so that the total
transverse moment vanishes. The reasoning is purposely circular, but 1t
points to the crux of the problem and reintroduces the idea that a macro-
scopic transverse magnetization, such as produced in a magnetic resonance
experiment, has to do with a coherent admixture, from spin to spin, of the
magnetic states m;, .
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2-2. ENERGY, MAGNETIZATION, AND SUSCEPTIBILITY

The magnetic energy, or Zeeman energy, of the spin system is given for
a general spin [ by

I
E= } ’E(ml)N(ml) (2-18)

mp=—

It is convenient to define the zero of energy E(m,) for each spin to be at
m; =0 for I even, and midway between the m; = + 1 energy levels for /
an odq half-integer. Then Eq. (2-1) is the appropriate expression for
E(m,) in Eq. (2-18).  For N(m;), we shall simplify matters a little by using
an expression that will be valid in the high t at imi :
b gh temperature limit only:

Nexp(—fym Hy/kT) N —hym,; H,

N(m,) =. ~
2l rexp(—hym; Ho[kT) ™ 21 + | P T

(2-19)

The first equation in expression (2-19) is, of course, exact. The de-
‘r}omlnator is that fundamental expression of statistical mechanics, the

sum  over states,” or partition function. The replacement of’ the
denominator by 2/ + | in the second equation in (2-19), although retaining
Fhe fu!l exponential expression in the numerator. is conventional but
inconsistent.  If yhHom /kT < |, the exponential in the denominator may
be expanded:

1

—yhHqm, yhHy I I (yhHo\?
exp ———— = - ° 4

i

The second term in the sum is zero since Y m,; = 0, but the next term is
not. Thus, the denominator’s lowest term in the expansion parameter is
quadratic, but the numerator’s lowest term is linear. To be consistent
we must take two terms of the numerator and one of the denominator7
The exponent in the numerator has been retained at this stage because one;
SO then is concerned with population ratios, in which case it is somehow
easier always to write

exp(E,/kT — FE _
p( /’ ):exp(Ea fi);1+Eu E,
exp(Eg/kT) k1 kT

than

1+(Ea/kT)~(] Ea) E,,) E,—E,
Ercrrad Ul e R

Macroscopic Properties of Nudlear Magnetism 29

Equation (2-19) satisfies Eq. (2-9), agrees with (2-17) in the high temperature
limit, and satisfies conservation of spins, Z’_, N(m;) - N, n that it
also. Expansion of (2-18) with (2-19) in the high temperature hnut yields

N ! yhH,
E ~ hH | —
TEe "m’( KT m’)
N (hRHO\? L,
“*21+1(kT> _Z,m’

It is easily verified that 31, m? = [I(I + 1)(2I + 1)]/3, so that

2p2 2
£ Ny + DH, (2:20)
3kT

As an aside, it is interesting to compare the formula (2-20) with the
classical formula in the same limit:

E= —(n-HON - plly NCcos 0 (2-21)

where ¢ > indicates the thermal average of the quantity inside it, caleulated

according to Boltzmann statistics. To find (cos 0>, one must weight
cos 0 by the probability that the moment u is oriented at angle 0 to H,:

cos 0 exp(uH, cos O/kT) dQ

[9]
cos ) =
< ? 4n
where the integration is over the solid angle the complete range of which
is the denominator 4. Expand the exponential.  The first term vanishes
and the second yields:
1 uH,

pwHy 1 o7 2 . _ !
ﬁzjod()cos ()sm()-3 T

Substituting back into (2-21), we obtain
E = M
3kT

The quantum mechanical equivalent of w2 is y*h2I(1 + 1),! and the factor

1)]'/2 defined to be the magnehe

! Occasionally one seces the quantity [¢?1UJ »
und in the older hteratute on

moment, rather than g/. The former is most frequently fo
magnetism.
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of 3 in the denominator of (2-20) is the quantum average of m,?, just as
it is the average of cos’ @ in the classical calculation. (This equivalence
was known as the ** principle of spectroscopic stability ” in the early days
of quantum mechanics.)

The magnetic moment per unit volume may be defined by the expression
E/V=—-M, -H,. From (2-20), we see that

N+ 1)

°Ty 3kT 0 (2-22)

The same expression is obtained from M, = n, u,/V, where n, is given
by the high temperature expansion of (2-17). The static magnetic
susceptibility y is defined by M, = y,H,, so we obtain the well-known

formula

(N PRI+ 1)
0= (3) Mo (2-23)

A word about units is in order. In the Gaussian system, which is still
largely used in research physics even though it is no longer the system of
choice in elementary courses, the dimensions of M, B, and H are the same.
Hence, y,, from the defining expression, is dimensionless. As defined here,
it is often referred to as the volume susceptibility, however, to distinguish
it from mass or molar susceptibilities. These quantities arise from a
definition of M, in which the number of moments contributing is not the
number in cubic centimeters, as in (2-22), but the number in a gram or the
number in a mole. With such a definition, since M, and H, must still
have the same dimensions, the quantity y, is not necessarily dimensionless.
The mass and molar susceptibilities are related to the volume (i.e., dimen-
sionless) susceptibility by

(X)mass = (x;VBl (2'243)
(X)molar = (X)vol [% (2‘24b)

where p in (2-24a) is the density, and v in (2-24b) is the molar volume,
v= N,M/p, where N, is Avogadro’s number, and M is the atomic mass,

2-3. RESPONSE TO AN ALTERNATING FIELD;
COMPLEX SUSCEPTIBILITIES

In th_e Rabi magnetic resonance experiment, isolated spins interacted
only with the static and alternating fields. Earlier in this chapter we
introduced the concept of spin-lattice interaction. We now need to
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combine them all and discuss, as we did before, the components of the
magnetic moment in the presence of these interactions. Now, however,
the magnetic moment to consider is the macroscopic magnetic moment of
the entire sample. We shall begin by discussing the z component, followed
by the transverse components M, and M, .

There is a subtle difference between the effect of the rf field on the isolated
atom in Eq. (1-22) and its effect in the presence of spin-lattice interaction,
The origin of the distinction lies in the fact that with spin-lattice inter-
action the states m; are not quite eigenstates of the total Hamiltonian.
When one speaks of the states in the approximate language of m,, one
must then absorb the approximate nature of the description into a lack of
sharpness of the energy level, and one speaks of the level as having a
breadth given, in fact, by the uncertainty principle argument AE > h/T).
In discussing M in the presence of the rf field, we are particularly interested
in small deviations of M from M,. The rf field is regarded as a perturba-
tion that, in the language of Chapter 1, is to produce only a small amplitude
b in a state which initially had |a|?> = 1. Thus, in Eq. (1-22), P(}) < 1 in
the perturbation theory limit, if |a{? = 1 is to continue to be true. P(—1)
1s small for small times ¢ after the perturbation is turned on. and one sees
immediately that P(—3})=~r? for intervals of ¢ such that P(—}) <1,
Fortunately for the preservation of a linear theory, the quadratic de-
pendence on r i1s not correct for the problem with which we are now
concerned, and the correct time ‘dependence for the probability of the
m; = — 4 state being occupied is a linear rather than a quadratic one. The
apparent paradox is resolved by noting that P(—1) was computed for
exact eigenstates m, = + 4, whereas these are not exact eigenstates in the
presence of spin-lattice relaxation. The final result must involve an in-
tegration over all the states making up the “‘level” of nonzero width.
The details are carried out in Abragam’s treatise Nuclear Magnetism [2]
(see Chapter 2).

The probability of a transition from the state m, to the state m; — 1 is
proportional to time. Unlike the case of spin-lattice relaxation, however,
the transition rate for a spin in state m; — | to m, is the same as the
transition rate for a spin in state m; to m; — I. The processes are to be
contrasted: the spin-lattice relaxation process drives the population differ-
ence n toward the thermal equilibrium value ng; the rf field drives n toward
zero. The latter statement is easily verified:

‘AN
( *) = =N, W, +N_Ws=—nW,
rf

dt
and
(dN_) . (dN+)
dl Jrf - d' f
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Hence,
in
(‘—) = —2W,n (2-25)
dt ] ¢

Equilibrium occurs when n =0, Q.E.D. The transition probability per

unit time W, is properly computed by the standard time dependent

perturbation formula (the so-called ** golden rule”’) of quantum mechanics.

The perturbation is the interaction of the magnetic moment and the rf

field, —p - H,; we need remark here only that W is proportional to H,2.
The total rate of change of n is the sum of (2-14) and (2-25)

dn ng —n
— = —2W,n + 2-26
(1[ o N Tl ( )
In the steady state dn/dt = 0, and (2-26) shows that
no
=— 2-27
"TTvawLT, (2-27)

Equations (2-26) and (2-27) may be rewritten in terms of M_ = nyh/2
simply by substituting M, for n and M, for n,. FEquation (2-27) shows
that the rf field does not appreciably disturb M, from M, as long as
2W . T, 1. When this inequality is not satisfied, n < n,, and the
resonance is said to be saturated. Additionally, the rate of energy
absorption from the rf field may be calculated from (2-26),

dE hoW,
honw, = 0"

= (2-28)
dt 1+ 2W, T,

Note that dE/dr becomes independent of W as W, exceeds 4T;.>
The discussion of the transverse components of M in the steady state
situation must be phrased in rather general terms. It is again convenient
to work in the frame rotating with the rf field, angular frequency w.
Let H, be along the x axis in the rotating frame. Define susceptibilities
x' and x” by the relations
M, =2y'H, (2-29a)

M, =2y"H, (2-29b)

Equations (2-29) are, first of all, linear. That is, the transverse magnetiza-
tion is proportional to the first power of the perturbing rf field H,. Note
that x' has been defined to be the proportionality factor between H, and

2 The failure of the first attempts to observe nuclear magnetic resonance in solids,
by C. J. Gorter in the late 1930’s, can be traced to the use of a sample with a T, that
probably was several hours, so that 2W,T, was undoubtedly very large and the power
absorbed from the rf field by the sample was very small.
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the component of M parallel to, or in phase with, H, in the rotating frame.
The out-of-phase or orthogonal component is determined by x”.

Necessary additional insight is obtained by transforming back to the
laboratory frame, X, Y, Z = z, where we assume that the rotating H, is
produced by a linearly polarized rf field in the X direction:

H. (1) = 2H, cos wt

In the laboratory frame, then, the X component of the magnetization is,
from Eq. (2-29),

M,{t) = (3’ cos wt + " sin wt)2H, (2-30)

Equation (2-30) may be expressed more compactly, and more convention-
ally, as the real part of a complex quantity. We define the complex
quantities J#y = 2H,e'*' and #y = 2xH,e'“". Their real parts are the
physical field and magnetization, respectively. Comparison with Eq.
(2-30) shows that My = Re .# only if y is the complex quantity

x=x —ix (2-31)

The linear relation between the complex driving term . ,(¢) and the com-
plex response function .#,(t) has many familiar parallels in physics.
Probably the first one encountered by most students is the generalized
Obm’s law from ac circuit theory, ¥ = # %, where & is the complex
impedance. The same care must be used in calculating quantities with
complex .# and #, as with complex current, impedance, and voltage.
Thus the instantaneous power absorbed from a generator is (Re .#) (Re 5#),
not Re(.# 7).
The average power absorbed by a unit volume of material is

1 7 d.#
. -
P J-O Re o7 Re( ; ) dt (2-32)

where T = 2n/w is an rf period. The only term in the scalar product in
the integrand is the X component, so

1 T
P= T f (2H,)? cos wt(—wy’ sin wt + wy” cos wt) dt
1]

1 T
= 4H12wx”(,—r— fo cos? wt dt) = 2H,%0y" (2-33)?

* Comparison with Eq. (2-28) would allow immediate determination of X" if W
were known. We shall not pursue that course, since we shall eventually get Wy, for the
particular situation (2-28) represents (lifetime broadened levels) without using quantum
mechanical perturbation theory. See the discussion at the end of Section 2-5.
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The analogy between the impedance and y cannot be made blindly.. The
real part of 2 determines the loss, and the imaginary part determines the
nature of the periodic but lossless exchange of energy between the circuit
and the generator. The terms “real” and ‘“imaginary”’ must be inter-
changed in the preceding discussion because the voltages that interact
~with currents in the magnetic system are induced; they are determined by
dA#|dt = io.#. The phenomenon of induction accounts for the factor
of w in (2-33) and the appearance of x" instead of X' in the expression
for the absorbed power.

Without further assumptions about the details of the system, except for
the all-important one that the ‘‘cause must precede the effect,” one can
establish that " and x” are not independent of each other but are related
by integral relations known as the Kramers—Kronig relations, which were
independently derived with reference to optical absorption by Kramers and
Kronig in 1926. A thorough discussion and derivation of these relations
may be found in the text by Slichter [3], in which there is a precise mathe-
matical formulation of the somewhat enigmatic statement made previously
about cause and effect. Relations such as those of Kramers and Kronig
exist between the real and imaginary parts of the complex linear response
functions of physical systems, whether they be magnetic or electric suscep-
tibilities, impedances of passive electrical circuits, or reactions in elemen-
tary particle physics.

2-4. THE BLOCH EQUATIONS

Nuclear magnetic resonance in condensed material (namely, hydro-
genous materials such as water or paraffin wax) was first observed in 1946
independently by Professor Felix Bloch and coworkers at Stanford, and
Professor E. M. Purcell and coworkers at Harvard.* In conjunction with
the experiments at Stanford, Bloch proposed phenomenological equations
of motion for the macroscopic magnetization vector M, which serve very
well to describe magnetic resonance experiments in liquids, gases, or
‘“liquidlike” solids. It will be one of the tasks of this book to enable the
student to comprehend in physical terms the limitations of the Bloch
equations, but first we must set them down and explore their solutions.

The object is to express the interaction of the magnetization »ith the
external fields (static and alternating), with the lattice, and to write a term
that expresses the interaction of the magnetic moments with each other and
with other internal magnetic fields in the sample. We have already
accomplished the first two tasks, and we have a major portion of the Bloch

4 Bloch and Purcell shared the 1952 Nobel prize for their work, the third Nobel
prize awarded for work described in this book. Stern won the prize for his molecular
beam work in 1943, and Rabi for the magnetic resonance method in 1944,
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equations if we assemble Egs. (1-11) and (2‘-26) in slightly altered and
compatible form. The effect of the interaction of tl}e moments 1.1nder-
going resonance with each other and other magnetic momc?nts in the
sample, via the dipole-dipole interaction or through. more espternc gua}ntum
mechanical effects called exchange interactions, is contained within the
Bloch equations by a single parameter that affects only the transverse
magnetization, the components of which are M, and M, . ' (Wc‘j shall‘use
lowercase subscripts for the laboratory coordinate system'lr‘l this section,
and identify equations written in the rotating system .expllc.ltly.)

Bloch assumed that the internal interactions of spins with each other
could be expressed by the equation

My = — M-y (2-34)
ot T,
Equation (2-34) defines the parameter T, k.nown .variously as the tr.ans-
verse or spin-spin relaxation time. (The partial derivative has been written
only to call particular attention to the existence of Fhe other terms t.hat
cause M, , to change.) Equation (2-34) is the cquat{on for a mggnetxza—
tion that aecays exponentially to zero. Suppose that in the rotating frame
at w, = yH, the transverse component M, is created at t==' 0. In thg
context of Chapter 1 it persisted indefinitely. What can cause it to decay?
One obvious cause would be an inhomogeneous magnetlc': ﬁgld across the
sample so distributed that the Larmor frequencies'of the spins in the various
parts of the sample differ sufficiently so that in time 7.‘2' they would get opt
of phase with each other enough to diminish the initial M" to 1/e of its
value. Although it would take special field inhomogenelty tq make Fhe
magnetization decay exactly exponentially, the pomt'ls worth 1llustrat1‘ng
with a figure. Figure 2-3 shows M,(0), in the rotating frame. Imagine

y ¥y

o x X
M, (0) My (T,)

(a) (b) ©

Fig. 223 Rotating frame view of decay of M,. (a) Initial condition. (b)
Partial decay (t ~ T3). (c) Total decay (+ > T3).
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M, made up of small magnetization vectors that precess at a variety of
frequencies differing by small amounts either way from the average
frequency w,. Then in a frame rotating at w,, they precess one way or
the other until by # = T, , their vector sum is still in che x direction but has
diminished to M (0)/e.

One internal physical process that diminishes the transverse magnetiza-
tion is the spin-lattice relaxation time 7;.  Any other process, such as field
inhomogeneity, only adds to the rate at which M, , diminishes, so that
T, <T,. The most interesting T, process is the interaction of each spin
with internal fields. By analogy with the external field inhomogeneity
mechanism, we should guess that the internal fields that act to dephase
M, , are those parts of the total internal fields which are in the z direction
and which are static and quasistatic. That the internal fields should
manifest themselves just as single parameter T, in an equation of the form
of Eq. (2-34) is, in fact, a result of rather special circumstances which we
shall explore later.

Combining Eq. (2-34) with the torque and relaxation equations, we get
the Bloch equations: '

dM, My—M

- - 2+ (M x H), (2-35a)
1
M. . M
a d:.y _ Tv +9(M x H),, (2-35b)
2

where
H=kH, + iH,(¢)

2-5. SOLUTIONS OF THE BLOCH EQUATIONS

Solutions of Egs. (2-35) are not difficult to obtain for a few special
experimental conditions that are also of particular interest in practice.
We have actually already discussed, in two separate parts, one particularly
interesting solution that we can do without mathematics; thus we begin
with that example.

Free induction decay

In making the plausibility argument for the form of the T, term, we began
arbitrarily with the magnetization in the x direction in the rotating frame.
The subsequent exponential decay with time constant T,, determined by
Eq. (2-34), appears in the laboratory frame as

—1

M (1) = M,y cos @yt exp T (2-36)
2
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We have two problems: how to produce M,(0) and how to detect M (¢).
Producing M (0) may be accomplished by a *90° pulse,” a transverse rf
pulse of magnitude H, in the rotating frame at w, = yH,, which acts for a
time 7 such that yH, 7 = n/2. From Chapter 1 we see that if H, is station-
ary in the y direction in the rotating frame, M, = M, precesses about H,
at yH; = w, until, at T = n/2yH,, it is pointing in the — x direction. The
experimental arrangement to do this is shown in Fig. 2-4. We have
neglected one thing of great importance. The pulsed rf field that pro-
duces the 90° rotation of M, in the rotating frame must act in the presence
of T, and T, processes, rather than in their absence, as in Chapter 1.
Consequently, the 90° nutation of M, is only an approximate description
of what happens, and we must find how good an approximation it is. If
the major torque on the magnetization is to be from H, during 0 <t < 1,
then the relaxation toward H, (in time 7;) and the dephasing of the
transverse magnetization (in time 7T,) must not be important compared to
the precession about H, during 7: 1 <« T, < T;. The requirement on H,
is thus (n/2yH,) « T, , or

T
H — -
yH, > 2T, (2-37)

It is the same result we get if we assume, plausibly, that H, must be much
l;srger than the internal fields or external field inhomogeneities described
yT,.

A word is in order about the magnitudes involved for a nuclear resonance
experiment. The largest internal fields in ordinary substances (think of
NaCl, for example) are caused by the nuclear magnetic dipole-dipole
interaction. The magnetic field produced by one dipole a distance r from
another is on the order of u/r3. Typically, since u = yh = 10723 ergs/G,
and r ~2 x 1078 cm, AH = pjr> = 10723/8 x 1072* ~ 1 G. Although
the Bloch equations are not, in fact, generally valid for solids, they do
provide a framework for rapid estimates of upper or lower limits. To
satisfy our inequalities, H, 2 10 G is required, and 7 < n/(2 x 10* x 10) =
10 psec. The T, for this case is about T, ~ 1/y AH = 100 usec. These
calculations provide upper limits on fields and lower limits on times for
this particular substance, because, as we shall see in the next chapter, the
effect of the nuclear motion that occurs in a liquid or gas is to decrease the
effective dipole-dipole interaction for T, processes, often by several orders
of magnitude.

How large is the induced signal? The precessing magnetization in the
xy plane in the laboratory frame is of initial magnitude M, = xo H,,
where y, is the static susceptibility, Eq. (2-23). Referring to Fig. 2-4, let
the coil that produced the 90° pulse of H, serve also to pick up the induced



(a) field geometry

oscillator

© y input

-
=
gate scope trigger
generator
(b) electronics
“ z
/// Mo([ = 0)
/
H, ,
i y
1
\\
M 0 (t = T)
x
(c)

Fig. ?-4 Schematized apparatus for observing nuclear free induction decay.
(a) Field geometry. (b) Electronics. (c) Rotating frame field and magnetization
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signal caused by the rotating magnetization immediately after the 90°
pulse. If the coil is of unit volume, cross-section area A4, and has n turns,
then the induced voltage will be

d 1 d 1
Vo —Np30_ _ SdmAng — = ——dnnndoM,  (2-38)

where ¢ is the flux linking the coil: ¢ = BA, and B=4nM, and 7 is a
factor between zero and one, the ** filling factor,”” which takes into account
incomplete flux linkage between sample and coil. A problem at the end
of the chapter will show that the magnitude of ¥ can be as large as several
millivolts for nuclear systems if the coil is part of a resonant circuit of
reasonable Q.° Several millivolts is, of course, a very easily detectable
signal at radio frequencies.

Equation (2-38) gives the signal V,, immediately after the 90° pulse,
where the full equilibrium magnetization M, is turned over into the
transverse plane. The transverse magnetization, as we have seen, decays
exponentially with a time constant T,. Since T, » 2n/w,, the signal is
contained within a slowly varying envelope. The envelope decays
according to the expression V, exp(—/T,), which is known as the ‘‘ free
induction decay.”

Steady state solution

The next type of solution of the Bloch equations to investigate is the
steady state solution in the presence of continuous F,. We shall express
the solutions of (2-35) in terms of the susceptibilities y'(w) and y"(w). To
begin, we rewrite Eqs. (2-35) in component form in the rotating frame of
the rf field, which, in the laboratory frame, is

H, (t) =12H, cos wt

The transformation is defined by @ ~ - wk. We ignore the counter-
rotating component, as in Chapter 1.
d‘:“:‘ = M, H, + w (2-392)
d:* = —yMy(Ho - ‘yl) = A:z (2-39b)
d;’:’ = —y[M,H, - M,(HO - ‘y—’)] - %’ (2-39¢)

3 The results of Eq. (2-38) will be in the Gaussian units, where V is expressed in
statvolts. The result must be multiplied by 300 to express the results in volts.
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In the steady state, the left-hand sides of Eqs. (2-39) vanish. From
Eq. (2-39a) we see that (M, — M,) is proportional to M, H,. We exbect,
from the definitions of the susceptibilities " and x", that M, will be pro-
portional to Hy, so (M, — M,) is of the order H,%. As long as we restrict
ourselves to terms linear in H;, we can replace M, by M, in Eqs. (2-39b)
and (2-39c¢).

The algebra is simplified by introducing #, = M, +iM,. Add
(2-39b) to / — 1 = i times (2-39¢):

ds#a .
dt

1 w
= -4, [~ + iy(HO — —)] + iyMyH, (2-40)
Ty, y

The steady state solution to Eq. (2-40) is

_ iyMo H
T, + iy(Hy — ofy)

M, (2-41)

We define w, = yH,, substitute M, = y, H,, and then separate into
real and imaginary parts to get

(wg — )T,

Mx = Yo Wy TZ mm

", (2-42a)

i
M, =xowo T, 1+ (0 — wg)’T,? H, (2-42b)

From the definitions of x* and x”, Eq. (2-30), we identify the components
of the complex susceptibility:

' Xowo T (wo — ©)T, 2.43
2 1+ (0 — wo)?T,> (2-432)

X/,zXoonz 1 »-43
2 1+ (w — w0)2T22 (2- b)

In Fig. 2-5, x" and x" are plotted versus (w, — )T, .

The components of the complex susceptibilities have some interesting
features. The full width at half-maximum of the absorption y” is 2/T,,
and the peaks of the dispersion y' are at w = wy *+ 1/T,. Equations
(2-43) are called Lorentz curves, after the line shape of the optical absorp-
tion and emission predicted by Lorentz using a damped simple harmonic
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A

Fig. 2-5 The rf susceptibilities x* and x” as a function of radio fr.equency w.
The vertical scale is in units of yo wo T3/2; the horizontal axis is in units of 1/T;.

oscillator model of the atom. The power of the resonance technique is
illustrated by the observation that the maximum value of x", xo wo T>/2,
may be written yo Ho/AH, where AH = 2/yT, is the full width of " in
field units. In liquids, T, can be on the order of seconds, and hence the
factor wq T,/2 or Hy/AH can be as high as 10°.  Thus, although x, might
easily be 107'", and hence the static magnetization yo, Ho = 1077 G, the
dynamic susceptibility at resonance may be 10~*.  Of course, the probing
field H, is necessarily small (to be discussed), but the magnetization is at
w, rather than zero frequency, so the relatively simple techniques of rf
signal amplification and detection are used.

Had we not neglected the differunce between M, and M, in Eq. (2-39¢),
the algebra leading to Eq. (2-43) would have been more complicated, but
far from intractable. The result would have been to add the term
y2H,*T, T, to the denominator of Egs. (2-43a) and (2-43b), so that (2-43b),
for example, would read

_ Yo wo T, 1
2 1+ (w— we)?*T,?% + y2H,*T\ T,

”

(2-44)

The term S = y?H,*T, T, is called the saturation factor. Regarded as a
function of S, the absorbed power, 2H,%x"w,, is a maximum when S = 1.
For S$» 1, x” tends to zero; the resonance is said to be saturated.

The solution for M, including saturation is also interesting:

1+ T (w, — w)°

M,=yxoH
== Kooy T, (wo — w)* + y*H*T, T,

(2-45)

It is worth displaying (and worth the student’s time obtaining), because it
can be used with previous general remarks to calculate W ;.
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Recall Eq. (2-27) for the excess population n:

Ny

"=, T, (2-27)

Using noyh = 2x0 Hy, and M, = inyh, we equate (2-27) and (2-45) to
obtain
1 2H 2
W=~ i - T, -
2 l + Tz (wo - w)

(2-46)

Note the rapid diminution of the transition probability as the rf frequency
w differs from w,. Of more interest is W,; at v = w,. To generalize
as much as possible, we must consider the line shape for an absorption
experiment. It is, of course, x”, but we wish to express that shape as a
function of v = w/2n, g(v), which is normalized to unity:

f g dv=1
[¢]
The correct g(v) for a Lorentz line is

3 2T,
14 47°T, 3 (vy — v)?

g(v)

Value of g(v) is 2T, at v =v,. Returning to Eq. (2-46), we then can
substitute for T, the quantity +g(v,), and we get, for v = v,,

Wy = h’zH 1 29("0) (2-47)

This formula is, in fact, the quantum mechanical result (the *golden
rule”) for the transition probability of a spin 4 system, where the quantity
g(vo) is the *“ density of final states,”” which explicitly expresses the width
of the level via the shape and normalization. The quantity y2H,2/4 is
obtained from the square of the matrix element of the perturbation — u, H,
between the initial and final states:

IKHyHL L] — 4512

Finally, to complete our earlier discussions, we can equate (2-33),
P= 2H,*x"w, and (2-28), P = nyhw’¥4/[1 + 2W, T,], and solve for %’
which turns out to be (2-44). We conclude that the Bloch equations are

consistent with our general discussions about energy absorption based on
detailed balancing.
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2-6. SOME EXPERIMENTAL CONSIDERATIONS

A great variety of experimental arrangements to observe nuclear mag-
netic resonance have been successfully used. Descriptions of some of the
earlier ones are in the book by Andrew [4]. Although Andrew’s book is
old, most of the basic techniques still in use are described there. We want
to analyze the experimental problem in a general way to establish the
understanding with which the student can investigate on his own any
particular circuit he may wish. Although our discussion will be couched
in the language of radio frequencies—coils and capacitors are prominent—
rather than microwave frequencies where resonant cavities are usually
used, the analysis is really sufficiently general to apply to the microwave
case also.

Q-meter detection

Consider a coil the inductance of which in the absence of a sample is L, .
If a sample of permeability u occupies all space threaded by the magnetic
lines of force generated by a current through the coil, then the inductance
of the coil becomes

L=uLy=(1 +4mpL, (2-48)

If the sample does not fill all space, the susceptibility y must be multiplied
by the filling factor n, as in Eq. (2-38). The quantity y in Eq. (2-48) is the
complex susceptibility defined in (2-31). Since no coil exists without
resistance, unless it is made of superconducting wire, we must really always
specify the coil’s resistance R, as part of the coil. Our problem is to
calculate the coil impedance 2, = Ry + iw%. Since £ is complex, in?
has a real part (assume n = 1):

Z, = Ro + io[l +4n(y’ — ix")]L,
= Ry + 4nwly x" + i[1 + 4ny JwL,

To design an experimental method of detecting x’ and x”, we must know
their size relative to other terms in Eq. (2-49). Let us use, for numerical
purposes, a fairly typical sample having a resonant frequency of 10 MHz
in 10* G, and with a static susceptibility, y, of 107!1; T, = T, =107 sec.
Then 4y has a maximum value of 1077, A coil of wire that is useful at
10 MHz has an inductance of, say, a microhenry, so wlL,~60 Q, and a
reasonable R, would be 1 Q. Therefore, the reactive (imaginary) part of
Z, changes by one part in 107 as we go through resonance, and the
resistive part changes by the fractional amount 4nwL, x"/Ry = 1075, (It
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is convenient to identify the ratio wLo/R, = Q as the *‘ quality factor.”
See a text on ac circuits if you are unfamiliar with the definitions and
uses of this parameter in resonant circuits.) We conclude that a necessary
feature of any circuit design is that it be particularly sensitive to small
changes in the real or imaginary part of 2 .

With few exceptions, the coil L is used in a resonant circuit by placing a
capacity C, in parallel with L such that the Larmor frequency, yH,, is the
same as the resonant frequency wo = 1/(Lo Co)"?. The simplest con-
ceivable circuit for observing a nuclear resonance is the so-called ** Q-
meter”’ circuit, shown in Fig. 2-6. The oscillator and large resistor R

oscillator rf-level

meter

at wy

Fig. 2-6 Block diagram of Q-meter nuclear magnetic resonance detector.

form a constant current generator of current /,. The parallel resonant
circuit, tuned to w,, presents an impedance that, at resonance, is real:
Z,= Quw,L,. The voltage across it, Vo =I,Z,, is amplified, and its
magnitude is detected by the peak-reading voltmeter. From Eq. (2-49),
we see that as we go through resonance by changing H,, for example, the
real part of & changes fractionally by the amount 4ny"Q, so that the
voltage at the amplifier input changes by

AV = I 4ny" Q*wl,
or by the fractional amount

"2
AV _lodnrQluly _, o (249)
Vo I,QwL,

We shall now give a word of explanation as to why we were able to
ignore the change in reactance of the resonant circuit. For future uses it
is best explained with a diagram, rather than analytically. Figure 2-7 is a
complex plane diagram, sometimes called a *‘ phasor”” diagram, in which
the magnitude and phase of the off resonance voltage across the sample is
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w = wp // ~ -
Vo

\
vy fw — wel = 1/T;
w o 2
V, + AV L

Fig. 2-7 Magnitude and relative phase diagram for voltages in Q-meter
detection.

given by V,, the ““signal™ voltage by A¥", and the total voltage by ¥, +
AY", the magnitude of which is detected by the peak-reading voltmeter.
The complex signal A¥” is given by

AY = —V(dny" + idny')Q (2-50)

Reference to Eq. (2-50) and Fig. 2-7 shows that only the component of
AY" in phase with V, is effective in determining the length of V, + AY".
Since ¥V, is real, because Zy = Qu, L, is real, the Q-meter circuit detects
only x” to first order. The imaginary component, — iV, Q4ny’, is said to
be in quadrature and affects the length only to second order in x'.

The analysis of the *“series-parallel” resonant circuit of Fig. 2-8a is

l
l

(a) (b)

Fig. 2-8 (a) Series-parallel tank circuit. (b) Equivalent parallel circuit.

algebraically clumsy. Equation (2-50) is an approximation not only to
first order in g, but also to the extent that wy = 1/(Lg C,)*/? is the resonant
frequency only in the approximation Q > 1. It is more convenient to
analyze the admittance % of the equivalent parallel circuit, Fig. 2-8b.
The fictitious resistance R, is related to R,, in the high Q approximation,
by Q = wL/R, = Rp/wL. Then it is easy to show that & = 1/Rp(l +
4nyQ), and, by virtue of the smallness of y, & = 1/% = R,(1 — 4nxQ),
when wqy = 1/(Ly Cy)'/?*~—~hence Eq. (2-50).

The discussion of the *‘ Q-meter” detector, so named because the
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detected voltage is proportional to the change in Q of the circuit, hence to
x”, was phrased to make it clear that the working of the circuit depends on
the selection of the component of the signal in phase with a much larger
voltage, in this case ¥,. A clear grasp of this concept is necessary to
appreciate the operation of bridges in magnetic resonance detection.
Figure 2-7 and the subsequent discussion make the point that the
Q-meter circuit picks out x” because V, and 4nQyx"V, = Re(A¥") are in
phase. A large number of bridge circuits have been devised to accomplish
this purpose, both in the microwave and rf regions. The archetype of the
rf phase reference or coherent detection technique can be summarized in
the block diagram of Fig. 2-9. In the discussion, it is understood that in

Vo . AV Voeio + AV
oscillator bridge adder detector
[Voeio + AV

peak-

— reading
voltmeter

Vol phase Voeio
shifter

Fig. 2-9 Schematic archetypical bridge circuit.

the output of the oscillator V,e'“", the e’ is suppressed. We assume ¥V,
is real for simplicity. The ‘“bridge” is a device which, when balanced,
has zero output, and which is unbalanced by the change in sample circuit
impedance on resonance. The only output is the signal voltage A¥ .
The phase shifter in Fig. 2-9 shifts the phase of the oscillator voltage by ¢
and supplies a reference signal to the adder, whose output is V,e'® + A¥".
The detector is just the ‘‘ peak-reading voltmeter” as before, and the
amplitude |V, e'? + A¥ | s, to first order in A¥", just ¥, plus the component
of A¥  in phase with the reference signal. One may write down the result
more easily by pretending we shifted the phase of A¥” by (~¢) instead
of the phase of ¥, by (+ ¢) and by computing the real part of A¥ e %:

Re(A¥ e %) = 4nV, Qy” cos ¢ — 4nV, Qy sin ¢’ (2-51)

Choosing ¢ = 0 with the phase shifter gives x”, ¢ = 90° chooses y', and, as
advertised, any admixture may be chosen as well.
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In real experimental arrangements, the functions of two or more of the
separate components of Fig. 2-9 are usually combined into one device.
If a real rf bridge is used in place of the box marked ‘“ bridge” in Fig. 2-9,
it may be balanced by dividing V', and sending half of it through an arm, after
which it recombines with the half that went through the signal arm with,
of course, equal amplitude and opposite phase. If the bridge is operated
in this fashion, completely balanced (off resonance, anyway), then the
reference part of Fig. 2-9 is needed. Often, the bridge is unbalanced
either in amplitude or phase (or a combination of the two), so that the
steady unbalance signal is much larger than the signal. Then the external
reference channel in Fig. 2-9 is unnecessary, and the unbalanced bridge
has also performed the function of the adder. On the other hand, if the
bridge is balanced, the ‘“adder” and detector may be combined, as is
often done in modern instrumentation, by using a device called a ** mixer,”
which takes two signals applied to two inputs and puts out of the third port
the sum and difference frequencies. In our case, the difference frequency
is zero, and its magnitude is given by Eq. (2-51).

Every statement previously made for rf techniques (frequencies up to, say,
100 MHz) has its equivalent in microwave techniques. The tuned LRC
circuit is replaced by a resonant cavity, which has a ** Q¢ and to which
the language of impedances, voltages, and currents may also be applied.
Microwave bridges are in many ways easier to understand than the older
rf cireuits, and in recent yearsthere has become available an rf version of the
time-honored component of the microwave bridge, the hybrid junction or
“magic tee.” It is now possible to make a nuclear resonance spectro-
meter that is an exact copy of the microwave equivalent, even to the
extent of the language used to describe it.

Al the original nuclear resonance by the Harvard and Stanford groups
used bridge techniques. The Stanford group lead by Bloch used a device,
the crossed coil spectrometer, which is perhaps the instrument of choice if
space around the sample permits. A sketch of the essentials of the arrange-
ment is shown in Fig. 2-10. Unlike other methods the bridge balance is
achieved by geometry. The field H, is applied in the y direction in the
laboratory by the split coil called the transmitter coil, and the signal is
induced in the orthogonal coil, the receiver coil, in the x direction of the
laboratory frame. Remember that the induced magnetization rotates in
the xy plane; thus either coil sees a magnetization varying at frequency w.
The bridge is balanced because, in principle, the lines of flux from the
transmitter do not link any receiver coil turns. The unbalance is achieved
by the natural lack of complete orthogonality, and control of the unbalance
can also be achieved by mechanical means with *‘ paddles,” devices that
“steer” the flux by means of currents induced in them by the field. Since
the balance is achieved mechanically, it is somewhat broad band, and the
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%\

T

Fig. 2-10 Crossed coil geometry: 7 1s the split transmitter coil and R the
receiver coil containing the sample; H, is applied perpendicular to the page.
Not shown are flux steering arrangements (paddles).

resonant frequencies of the transmitter and receiver can be swept syn-
chronously if necessary. One can also balance as well as possible mech-
anically and achieve the rest of the balance and the reference through an
electronic phase shifter, as in Fig. 2-9. There has even been a microwave
version of the crossed coil spectrometer, with two resonant cavities coupled
by the sample.

One somewhat academic difference exists between what is measured by
the crossed coil apparatus and the others we have discussed. Strictly
speaking, the complex susceptibility y is a tensor rather than a scalar
quantity, and the single coil measures the response M, to a field applied in
the x direction: we should write M, = y, H, .. The crossed coil apparatus
measures y,, , since the receiver coil is in the x direction and the transmitter
coil is ip the y direction: M, =y, H,,. There is no case in pure nuclear
magnetlc resongnc; in.which the distinction is important, since the pre-
cessing magnetization is circularly polarized. In the case of pure qua-
drupole resonance (see Chapter 4), the magnetization is actually linearly
polarized, and x,, = 0; the crossed coil technique does not work!

Marginal oscillators

Bridge and Q-meter circuits separate the function of oscillator and
receiver. The separation of these functions has the advantage that the
oscillator contribution to the noise of the device can be made negligible,
so that the entire noise generation is in the receiver and sample circuits.
The separation of these functions has the disadvantage that it is awkward to
sweep the frequency rather than the external field in displaying the reso-
nance or in searching for it. That objection is less true of the crossed
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coil circuit, previously mentioned, because the bradge balance depends on
geometry rather than on a number of trequency senvitive Ginvut element.,
Still, it is quite awkward to sweep over a fuctor of theee in lrequency
unless the generator and receiver functions are combined  That object
is achieved if the sample tank circuit is made a part of the osaitlator tank.
The device is then operated so that the voltage level of oscillator depends
critically on the tank circuit Q. Although the term dag’ Q) alno attects the
frequency of oscillation, normally only the level of operation s monitored,
so the circuit detects x”. The circuits thus used are at lcast a tactor of two
less sensitive than bridge circuits (because of the contribution ot oscillator
noise), and they become very poor at low rf levels, where the noise proper-
ties of the combined oscillator-receiver system become poor  But the
convenience of being able to sweep frequency by adjusting only the capac
tor in the tank circuit has made these circuits very popular  Robinson
has described a clever combination of Q-meter and marginal oscillutor
circuits that seems to have all the advantages of Q-meter and marginal
oscillator circuits, plus the ability to operate with very low rf levels (to
100 uV) on the sample coil (Robinson [5]).

Detection techniques

We have progressed gently in this chapter from elementary statistical
mechanics increasingly toward experimental considerations. This is as
it should be, since the numerical magnitudes of magnetization, the dy-
namical behavior of that magnetization as it interacts with the externally
applied fields with the lattice, and with itself (73,), all force onto the
experimentalist the techniques he uses. To conclude this chapter, we
examine some of the methods commonly used—and used not only in
magnetic resonance-- to display with greater clarity, with as much freedom
from noise interference as possible, the magnetic resonance signal. A
few words about noise in general will have to suffice to establish the motiva-
tion for the techniques used: for even a modest step beyond mere intro-
duction to the theory and practice of noise on electronic signals, the student
will have to consult a text on the subject (particularly recommended is the
book by Robinson [5]).

In discussing the various nuclear resonance techniques, we have sloughed
over a number of crucial points in the interest of moving the narrative
along. Let us remedy the fault by a rhetorical question: What arc the
major sources of noise in typical magnetic resonance experiments? The
answer is oscillator noise, source noise, receiver noise, detector noise, and
microphonics. The marginal oscillator circuits are particularly sus-
ceptible to oscillator noise; the bridge circuits and Q-meter circuits may be
operated so that oscillator noise is not a factor. Receiver noise i1s the
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best kind to have limiting your experiment because it can be combatted
by application of design skill and/or money, and it will always be a limita-
tion until it is smaller than the inherent noise of the source. The detector,
the device that converts the radiofrequency into direct current, has one
important property. It is usually a diode, so it converts to direct current
efficiently only when the radiofrequency applied to it is, say, greater than
3 V. That is another rather good reason for applying a sizable reference
radiofrequency in addition to the large one required by our analysis of
phase detection.

Now, if the device labeled *‘peak-reading voltmeter” in Fig. 2-9 is
actually a dc instrument, one is at the mercy of the instabilities of d¢
amplifiers, since very frequently rf amplification preceding detection is
insufficient to provide a signal of convenient size. The problem is over-
come by modulating the signal at an audiofrequency v,,, so that the
detected signal is at frequency v,,, not zero, and may be amplified further.
If the signal is somehow modulated, the detected signal is at v,, and noise
near v, is of importance. Diodes contribute noise with a 1/v frequency
spectrum down to quite low frequencies. This restriction is particularly
important for microwave diode detectors. Microphonic noise may, in
principle, be overcome by good experimental design, but the igeal is often
hard to achieve in practice. Those with long experience with microphonics
seem to agree that a noise spectrum of 1/v may not be bad approximation
in practice.

The source noise remains. A parallel tuned circuit on resonance looks
like a resistance R, = QwyL,. The unavoidable noise presented to the
input terminals of the receiver is called Johnson noise, and is given by the
Nyquist formula

Vit =4R kyT Av (2-52)

where the noise resistance Vy is in volts, R, is in ohms, T is in degrees
Kelvin, kg, Boltzmann’s constant, is 1.38 x 10723 J/K, and Av, the
bandwidth, is in sec™'. Note that Eq. (2-52) depends on Av, but is
independent of v, the center frequency.

Put together all these factors and one concludes that the game to play
is to modulate the signal at as high a frequency as possible and to use as
narrow a bandwidth as possible, dictated by Eq. (2-52). Figure 2-11
shows schematically the most common method for impressing a modulation
on a signal. The ordinate is x” and the abscissa is H,, which is varied
around the mean value by an amount H,,, at frequency v,,. Thus, H(1) =
Hy + H, cos 2nv, 1, say. If H, is smaller than 1/yT,, the rf signal at the
detector will be V(1) = (V, + V,, cos w, 1) cos wyt, where V,, is propor-
tional to dy"/dH,. The last clause follows from Fig. 2-11, and would be
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X" ~Hp (dX [dH)

Fig. 2-11 Graph to show that lock-in detects dy”/dH.

exact if y” were exactly straight between H, — H,,and H, + H,,: the output
signal V(¢) is amplitude modulated with a modulation depth proportional
to the derivative of x”, at least to first order in an expansion parameter
yT, H, . The frequency spectrum of the amplitude modulated rf signal
has a main peak at v, and sidebands at v, + v,,. The signal power i in
the sidebands. After detection (now we had better say after the first
detector), the signal power is at a frequency v,,. v, is usually a low audio
frequency for nuclear resonance, but may be as high as 100 kHz in some
commerical electron spin resonance spectrometers. v, must satisfy the
requirements v,, < 1/7,, so that the magnetization can follow the field
and always be in the steady state corresponding to our solutions of the
Bloch equations.

The ultimate signal we wish to record is to be at direct current, that is,
at w = 0. Clearly the job can be accomplished by the same method by
which the rf signal was rectified, and, for much the same reasons, a phase-
sensitive detector is employed. Since the phase of the audio signal
carrying the signal power is known, phase-sensitive detection at the audio
frequency may be used to discriminate against noise at v,, not in phase
with the signal at v,,. The device that accomplishes this task, the second
detector, is often called a lock-in. The terminology originated in radar
work during World War I1.

Finally, the bandwidth Av is normally limited not by the bandwidth of an
rf amplifier at vy, or the audio amplifier at v,, but by an RC network
arranged as a simple ‘‘integrator’ at the output of the lock-in detector.
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Figure 2-12 shows dx”/dH, of the ?7Al resonance in aluminum metal,
taken with the bridge, rf amplifier, and modulation lock-in technique
described in this chapter.

There are many circumstances in which the signal is strong enough that
signal modulation is neither desirable nor even possible. The only thing
to be done is to sweep through the resonance with the external field fairly
rapidly, making sure the subsequent amplifiers and detectors have enough
bandwidth to reproduce the signal faithfully. During this rapid sweep, it
may easily turn out that dH,/dt may be too large to be ignored in the Bloch
equations. Their solution then becomes much more difficult than our
steady state solution; some of the details were worked out in t= first in-
vestigation by Bloch et al., since their experiments were done that way.
Figure 2-13 shows a proton resonance in water. A problem at chapter’s
end deals with some of the aspects of that signal.

X' ldH,

6800 6810 6820 6830 fho

Fig. 2-12  Nuclear magnetic resonance signal, dx”/dH, of ” Al in Al metal.
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Fig. 2-13 Proton resonance in water, showing the phenomenon of ““ wiggles”’
(after Abragam [2], Figure III, 15).

|
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Spin echoes

We conclude this chapter on some of the macroscopic aspects of
magnetic resonance, and on the Bloch equations, by describing a pheno-
menon that appears, at first glance, to be too special, too clever a trick, to
merit description in a text with an aim as general as ours. But the
phenomenon of the spin echo, of a physical system emitting spontaneous
signals if suitably prepared, has been exhibited in a sufficient variety of
physical systems to make clear that it is a general property of systems with
the sort of nonlinearity exhibited by the Bloch equations. The physical
systems in which the spin echo has been seen, beyond the original nuclear
magnetization system, include electron spin systems, atomic systems with
induced electric dipole moments (at optical frequencies—the * photon
echo’), and plasmas.

The spin echo is most easily seen in the following sort of system. Let
T, and T, be rather long, but let T, be the parameter characterizing internal
spin-spin interactions. Place t-2 sample in a somewhat inhomogeneous
external field H, + H(r), so the variation of the external field over the
sample, described by H(r), can be described by a Tg <T,. The co-
ordinate r ranges over the sample. The following sequence of rf pulses is
applied to the sample: (a) at ¢ = 0, a 90° pulse; (b) at ¢ = 1, a 180° pulse,
where T, > t > T3 . The result is a spontaneous signal of magnitude
V, exp(—2t/T,) appears at { = 21.

Examine the process with the aid of Fig. 2-14. The 90° pulse tips M,
into the x direction of the coordinate system rotating at w, = yH, (see
Fig. 2-14a). The ‘*isochromats” precess in both directions relative to the

x axis until they have fanned out completely, in 7 2 Ty ~ 1/yH(r), where
H(r) is some average deviation of the field from H, (2-13b). Between the
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end of the 90° pulse and the beginning of the 180° pulse at ¢ = 7, a repre-
sentative magnetization vector will precess relative to the x axis of the
rotating frame by the angle ¢, = yH(r)t. The index i labels a particular
small region of the sample. It is convenient to label the precession angle
relative to the y axis: ¢, = (n/2) + ¢!, where ¢/ is illustrated in Fig. 2-14b,
for time ¢ just before the 180° pulse. The 180° pulse flips the entire
“pancake” about the y axis. The position of the magnetization that had
precessed ¢; is shown in Fig. (2-14¢c). It is now at ¢, = (n/2) — ¢{. It
continues to precess in the same sense during the subsequent time, so
that, at 27, it has accumulated another ¢; = (7/2) + ¢;. The total phase
accumulated at 27, including the 180° pulse, is thus (7/2) — ¢; + (7/2) +
¢: = n. The accumulated angle is independent of the labeling index i;
therefore, all regions of the sample contribute to a signal at r = 27, and all
magnetization vectors add to form a macroscopic vector in the x direction
in the rotating frame. The shape of the echo may be described as two
free induction decays back-to-back, as shown in Fig. 2-14e. The
signal is attenuated from the initial magnitude of the free induction decay,
Vo, by real T, processes, which result in unrecoverable loss of phase
coherence, as distinct from losses caused by static magnetic field inhomo-
geneities. If the echo height is measured as a function of 7,the 90 to 180°
pulse separation, the echo height will follow the exponential exp( —21/T5).

The preceding example of a spin echo is the barest introduction. Many
variations in pulse length, sequence, and number are possible. The tech-
nique is frequently used in the study of liquids and solids, where various
contributions to the line widths can often be unraveled. There are many
modern applications of the basic idea in seemingly remote fields, such as
nonlinear optics and plasma diagnostics.

2-7. CONCLUSION AND LITERATURE SURVEY

Most of the material in this chapter is covered in every text and review
article that discusses magnetic resonance. The material requiring statisti-
cal mechanics may be found in Feynman [6] and Reif [7], and, of course,
all more advanced treatments of statistical mechanics. Treatments of the
Bloch equations more or less on a somewhat more advanced level than
found here are in the article by Pake [8], the books by Andrew [4], Kop-
fermann [9], Slichter {3}, and Abragam [2]. Discussions of experimental

Fig. 2-14 (a) Effect of the 90° pulse on the magnetization vector M, . (b)
“Pancake” formed in xy plane of rotating frame after + > T3. (c) Effect of
the 180° pulse on the ith magnetization vector. (d) Precessing magnetization
vectors as echo is forming, corresponding to " of (¢). (e) Pulse sequence and
signals seen at various times. ¢’ corresponds to vector diagram of (d). Dotted
line traces echo envelope as 7 is varied.
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techniques may be found in Andrew and Kopfermann. A totally ex-
haustive compendium of everything done until 1966 in the area of micro-
wave instrumentation is in the book by Poole [10]. The previously
mentioned monograph by Robinson {5] on noise in rf circuits gives an ex-
cellent and clear discussion of elementary principles, with applications in
the last chapter to magnetic resonance instrumentation.

We should perhaps conclude by emphasizing that much of our discussion
in this chapter is applicable beyond nuclear magnetic resonance, even
though the language of NMR was used for convenience. The Bloch
equations are not valid generally for nuclear or electron spins in solids
(except conduction electrons in metals), but they are correct for liquids,
and do serve to provide an introduction to the phenomena involved. It
is also useful pedagogically to have them available for calculating y* and
x”, in order to provide concrete examples of these important but
slightly abstract functions. We remind the student that the chapter has
been macroscopic—we moved as quickly as possible to macroscopic
magnetizations and response functions for macroscopic samples. The
*“model theory’ we used, the Bloch equations, was entirely phenomeno-
logical, and also dealt only with macroscopic magnetizations and fields.
The observed signals are also macroscopic voltages, and the experimental
problems of measuring them formed an important part of the chapter.

Problems

2-1. Find the correct approximation to Eq. (2-17) in the limit yAH,/2kT < 1.
What temperature T must be reached for protons (y =2.6 x 10* G~!
sec™') in a field of 10* G before the high temperature approximation is
wrong by 109,? Find the same quantity if the magnetic moment is that
of the electron (y. =1.74 x 10" G~ ! sec™!).

2-2. Obtain Eq. (2-23) directly from Eq. (2-17) in the high temperature limit of
problem 2-1. Find yx. for protons in water at room temperature.

2-3. From the Bloch equations and Eq. (2-33), obtain the maximum power
absorbed per unit volume from the protons in water at 60 MHz. Use an
H, that makes the saturation parameter S = y*H,2 T, T; = 1 in Eq. (2-44).
Assume T, = T, = 3 sec.

2-4. Find the approximate maximum voltage at the input of an rf receiver
produced by the free induction decay after a 90° pulse applied to Na?3Cl.

Assume a receiver coil of 5 turns, cross section 1 cm?, and a resonant
frequency of 10 MHz.

2-5. Find the signal at the receiver input from a spin echo in water under the
following experimental conditions: coil, 10 turns, area 1 cm?; pulses,
90 to 180° sequence, T = 2 sec, T> = 3 sec.

2-6.

2-7.

2-8.

[
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Invent other pulse sequences involving more than two _pulscs that give tive
to other echoes. (There are almost limitless possibilities.)

Figure 2-13 shows the proton resonance in H;O in a“relgtlvcly"hm‘n‘o-
geneou’s field. The beating phenomenon, known as wiggles,” arises
because the external magnetic field is changing rapidly enough that the
field is off resonance before the transverse magnetizati_on has dcca‘ych
Since the magnetization precesses at a frequency proportional to the field,
the signal beats with the constant oscillator frequency, _and the fonstanll‘)t
changing difference frequency appears in the detected sugng! as w‘lgglcs.

The sweep in Fig. 2-13 is linear at 0.1 sec and 5 mG per division. Estimate

T? from the figure and the field inhomogeneity at the sample.

The cw (continuous wave) or steady state resonance sigqal in a particular
liquid sample consists of two nearby lines of eqqal intensity and transverse
relaxation time T>. Calculate the free induction decay following a 90
pulse if a transient experiment is performed. If the lines are scpura_xtcd by
angular frequency Aw in the cw experiment, show that an 11ppr()x1lllulc!y
90° pulse can be applied to both with a single pll!s_c applied at a frequency
midway between the lines if the 90 pulse condition s s_ullshcd, il‘l"ld thF
pulse length satisfies the inequality 7 < (Aw) ' (Satisfying the 90" pulse
condition simultaneously means H, > Aw/y, where Aw/y 1s the sc;‘mrutmﬂ
of the lines in field units. Such an /1, is said to be sufficient to " cover
the lines.)

Discuss the shape of the echo formed after two pulses of problem 2-8.
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CHAPTER 3

Line Widths and Spin-Lattice
Relaxation in the Presence of
Motion of Spins

This chapter will be concerned witl, providing a microscopic model
with which to estimate the parameters of the Bloch equations 7, and T,.
To do so, we shall introduce the complementary concepts of random fre-
quency modulation and random walk. The main use of these concepts
will be to achieve a clear understanding of the motional narrowing of
nuclear magnetic resonance lines, but the ideas are also important in the
understanding of other experiments in modern physics, which we shall
discuss in the latter part of the chapter.

3-1. INTRODUCTION

From a strictly economic point of view, magnetic resonance owes a
great deal to its usefulness in chemistry. It is useful in chemigtry because
the nuclear magnetic resonance line widths in liquids are so narrow that
resonant frequencies differing by as little as a part in 10® may often be
resolved. It has been found that the frequency of nuclei in different
chemical surroundings depends on the details of the surroundings.
For example, the resonance frequencies of protons in ethyl alcohol,
CH,CH,OH, are divided into three groups, corresponding to the protons
in CH,, in CH,, and in OH. The chemical shifts caused by the different
chemical environments are small, however, compared with the magnetic
dipole-dipole interaction between the protons in the molecule, which
corresponds to a magnetic field of 10 G produced on one proton by another
an angstrom away. Our first guess ought to be that the resonance lines
would be about 10 G wide, precluding a resolution of better than one part
in 10*.  We shall be concerned with the solution to this apparent paradox
in this chapter.
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To complete and sharpen the paradox, we write down the magnetic
field produced at a distance r by a point magnetic dipole.

Hd=—~3+3r—r (3'1)

The field H,; has the familiar dipole shape; the interaction energy of one
dipole at the origin with another dipole at r has a rather complicated
angular dependence, a 1/r> radial dependence, and it depends as well on
the relative orientation of the dipoles. Thus the dipolar field varies from
site to site, and cannot be exactly the same for each nucleus. The simple
estimate of |H,| ~ 10 G between protons, for example, is calculated by
using u/r3, where r is the nearest neighbor distance, and is to be taken as
an estimate of the rough magnitude of local fields in hydrogenous solids.
Thus we present the paradox as follows. The widths of nuclear resonance
lines in a liquid can be a fraction of a cycle per second in the presence of
local dipolar interactions as large as 50 kHz.

It is our purpose in this chapter to resolve the paradox both quantitative-
ly and qualitatively, to discuss the Bloch equation relaxation times T; and
T, as a function of the resonance field or frequency, and to broaden the
discussion to include the phenomena of ‘“‘exchange narrowing’™ and
*“exchange broadening’ in nuclear and electron paramagnetic resonance,
the Mdossbauer effect, and the intensity of Bragg reflections in X-ray
crystallography. We also hope to make clear the distinction between
“motional narrowing ™’ (a name for the effect we want to discuss) and the
“pressure broadening™ of lines in atomic spectra. It must be admitted
at the outset that the way of understanding the phenomena that we shall
develop is a natural one for magnetic resonance but not so natural for some
of the other phenomena. Nevertheless, it is important to grasp pheno-
mena from as many viewpoints as possible, so it is worth the strain placed
on our method to do so.

The resolution of the paradox involves the recognition that in a liquid,
a gas, and even in solids under some circumstances, the resonant spins can
move substantial distances relative to their average spacing in T,, and
even in a Larmor period in some circumstances. Thus, the local fields
with which we are dealing are not static but rather time dependent, most
often in a random way, and we must develop ways to understand how the
time dependence affects the resonance experiment. To begin with, we
shall tréat the problem temporally; that is, we shall examine the precession
of a typical spin as a function of time. Although we shall thus provide
ourselves with a useful formula with which we can estimate T, in a wide
variety ‘of cases, we shall not have grasped the significance of the term
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“motional narrowing” until we have reexamined the problem in fre-
quency space. To do that, we use some of the concepts and language of
frequency modulation of a classical oscillator.

The language will be classical throughout, and we shall deal in quali-
tative estimates. Such an approach does the subject something of an
injustice, since the phenomena are susceptible to quite precise and elegant
formulation via the density matrix of quantum statistical mechanics. We
henceforth banish from these pages any serious reference to the density
matrix, and guide more ambitious and sophisticated readers to the text
by Slichter [1].

3-2. RANDOM WALK CALCULATION OF T,

We imagine ourselves sitting on a proton in water, for example, respond-
ing to the various magnetic fields in the sample. The strongest of these
is the external field H,, and we can dispose of it by looking at the world
from a reference frame rotating at yH, = w,. The internal fields caused
by the magnetic dipoles of other protons are random in orientation and
time dependent. The z components of the local dipole fields add to or
subtract from H, and cause a more rapid or less rapid precession than Wy
about the z axis. In the rotating frame, these z components are responsi-
ble for the only existing precession about the z axis. Looking back at the
discussion surrounding the Bloch equations in Chapter 2, the student
should be able to recognize that these fields contribute to a T, process.
We shall defer until later the discussion of T, processes, but it is appro-
priate here to identify their source. Precession of the spin away from the
z axis is caused by transverse fields that are static in the rotating frame.
Thus we expect local fields having components transverse to the z direction
and frequency components at the Larmor frequency to contribute to T,
processes. There is more to it than that, and we shall return to the T,
problem later.

Let us construct a model of the longitudinal (z direction) local fields,
and compute T,. Let us presume that each spin in the sample sees a
constant local field 4, < H, in the z direction for a time 1., after which it
may or may not, with equal probability, reverse itself. In these terms, the
problem can be phrased in terms of the famous *“ random walk ’ problem.!
In that problem, the mean square distance traveled in the x direction,
{x?>, after n steps, each of length A in either the +x or —x direction, is

{x?y = nA? (3-2)

! For a derivation using arithmetical induction, see Feynman [2], vol. 1, p. 6-5.
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In our problem, the unit of length is phase of precession about the z axis
in the rotating frame, and the step length is yh, t.. After time t, the
number of steps n is t/1.; therefore, from Eq. (3-2), the mean square
phase accumulated is

t
(D)) = = (yhy ) = vk .t (3-3)
TC

It is perfectly within the spirit of the Bloch equations to identify T, as
the time such that (®?) = | (rad)?.? This criterion yields

1_ (bw)?*z, (3-4)

where dw = yh, .

The particular problem we have **solved " seems a very artificinl model
for the behavior of internal fields in a liquid. The defimtions of daw and
7. can be sharpened a great deal but at the expense of some mathematical
complexity. As it stands, Eq. (3-4) provides an extremely useful estimate
of T, in a liquid. If you wish to think of motions as being more ' fluid,”
less jerky than the model suggests, then 1, may be regarded as the time
during which the local field changes by an amount comparable to its
magnitude—a rather vague concept, to be sure, but one which might
satisfy one’s feeling that molecules are in continuous motion. Actually.
the “jump’ model has been shown by NMR techniques as well an by
neutron diffraction to be a fair description of a liquid, in which a given
environment around a given molecule persists for 1., followed by & change
to another configuration, with the duration of the changing time beiny
much less than 7. [If one regards the constant 1, to be an average, and the
single local field to be an average over local fields caused by all possihle
local arrangements of nearly magnetic moments, then the picture may not
look so unrealistic.  And 1t should look quite good for describing the
effect on the nuclear resonance line width of diffusion in solids

Equation (3-4) is a reasonable estimate of T, as long as dwt, « | I
7. is long, the step length das 1s itselt, when divided by y, the width of the
resonance line.  So in the presence of a changing local envitonment, the
line width is narrower than the static line width dw, as long us the lix al
environment changes rapidly compared with 1/dw.

Equation (3-4) is usetul i« wider variety of circumstances than the
student can presently imngine  We digress for a paragraph from the

2 The use of the notation I, instead of 7, will be explained later, when T, peimessrs
are discussed.  The distinction between /7, and 77, is made here to indicate that we s
not have included all possible sources ol 7, in this discussion.
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main line of thought to show the application of measurements to the
measurement of the diffusion constant. Let 7. be the mean time‘be'tween
jumps or changes in the local environment. . Imagine that a spin jumps
spatially an interatomic distance a, each tlme.. IF proceeds, then, by
random walk (in three dimensions) and travels in time f a mean square
distance

P~—a, (3-5)

The process described is called diffusion. It is described in continupm
theory by a differential equation in the concentration ¢ of the diffusing
constituent:

DVi—==0 (3-6)

The constant D is the diffusion coefficient. If Eq. (3-6) is solved for
simple initial conditions and one-dimensional geometries, the root mean
square distance the concentration spreads in time t from an mltlxal con-
centration is approximately (2D1)'/2.  Thus in Eq. (3-5) we identify

(3-7)

Since a, is related to the density, we have in Eq. (3-7) an expression for
1, in terms of macroscopic quantities that can be determined by quite
different, nonresonance experiments. Alternatively, we see from Eq. (3-4)
that T, measurements can provide a value for the diffusion consFant.D,
a number frequently hard to get if one is concerned with the self-diffusion
of a molecule surrounded by identical molecules—H,0O in H,0, for
example.

To summarize Eq. (3-4) and some of the subsequent discussion, we plot
log T, versus 7. in Fig. 3-1. The abscissa might easily be l/Dlor n/T,
where # is the viscosity and T the absolute temperature. For justlﬁcgtfon
of the last clause, see the reprint of Bloembergen’s thesis [3], the original
work in the field. Note in Fig. 3-1 the leveling off of T, to Sw~! at a
value of 7, on the order of dw™"', something we have justified only by a
plausibility argument so far.
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log T3

éwhr———— e

log 7,

Fig. 3-1 LogT; versus log 7.. Plot of Eq. (3-4) in region of its validity,
dwr. < 1.

3-3.  VERY SHORT CORRELATION TIMES:

wet. <€ 1

Suppose w, 1. < 1, and suppose the medium is spatially isotropic in the
sense that the fluctuating internal fields point in no preferred direction.
Then the magnitudes of the fields parallel to and transverse to H, are the
same, and their frequency properties are also the same. As a result, the
random walk in the transverse plane in the rotating coordinate system,
produced as described in the last section, also occurs away from the z axis.
This longitudinal relaxation, a T, process, is produced by transverse local
fields stationary in the rotating frame, thatis,at w,. The two independent
and orthogonal random walks occur at exactly the same rate if the magni-
tude of the fluctuating fields at or near zero frequency is the same as at the
Larmor frequency, w,. The simplest and most plausible description of
the random internal field has that property if wyt,. < 1.

Since there are two orthogonal transverse components of the local field
in the rotating frame, and since they act independently, the mean square
angular migration of a spin away from the z direction is

(Br, (0> =2y%h, P 1.1 (3-8)

just twice as great as in Eq. (3-3). Again setting ¢, (7,)> =1, we obtain

1 2
— =2(5 27 == (3-9
T (6w) . T )




64 Introduction to Magnetic Resonance

At this point, we see the reason for the introduction of the notation T,
before Eq. (3-4). If we wish to calculate the parameter T,, which
characterizes the line width of a Lorentz line, we must include not only
the inhomogeneity of the quasistatic local fields (so-called secular broaden-
ing). but also lifetime, or nonsecular broadening. Reexamination of the
Bloch equation for M, and a little thought produces the following con-
clusion. A T, process is one that causes precession of M, away from the
x axis of the rotating frame. Quasistatic fields in the z direction do this,
as do fields in the y direction at w,. Fields in the x direction produce no
effect because they exert no torque on M,. Hence, we should have

t 1 1

TZZT-’Z +2_7f1' (3-10)

where the first term is from Eq. (3-4) and the second is half of Eq. (3-9).
Comparing Eqs. (3-4), (3-9), and (3-10), we see that

T,=T, 3-11)

The equality holds in the limit w, 1. <1 and depends, we reiterate, on
spatial isotropy of the local fields. We have also filled in more of Fig. 3-1
if we regard it as a plot of T; ' or T{ ' versus ., rather than (T;) ' versus
7.; namely, the T, and T, curves for 1. < l/w, coincide. To fill in the
T, curve for longer 1, we require more general analytical tools, the develop-
ment of which we shall indicate in the next section.

3-4. RANDOM FREQUENCY MODULATION;
SPECTRAL DENSITY

In this section we shall make heavy use of the analogy between a
magnetic moment precessing at the frequency v = (y/2n)[H, + h,(t)] and
a classical, frequency modulated oscillator transmitting, for example,
classical music at a center frequency of 97.8 MHz.

We shall begin by considering a proper mathematical description of
frequency modulation. The simplest situation to treat is © sinusoidal
frequency deviation; that is, the angular frequency of the oscillator is
given by

w(t) = wy + Aw cos gt (3-12)

where Aw is the frequency deviation and g is the frequency of modulation.
We now need an expression for A(z), the amplitude of the fm oscillator
as a function of time. One approach might be to write

A(t) = Ag[cos w(1)t]
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We shall not number that equation, since it is wrong, just as it is wrong
to write that the distance a car travels in £ to be d = vt if v is not a constant.
The argument of a trigonometric function is a phase, and the phase
accumulated between ¢’ = 0 and t with frequency given by Eq. (3-12) ts

4 Aw
¢m=LM”W=wM+7ﬂmm (3-13)

Now we can safely write, complete with equation number,
Aw .
A(t) = A, cos[wot+—sm gt (3-14)
q

The ratio Aw/q is an extremely important parameter for future discussions:
Aw
q

m - (3-15)

where m is called the modulation index.  Tts suze relative to umity will be
crucial in many applications.

We wish to know the frequency spectrum of bq. (3-14). birst, it s
more convenient to rewrite Eq. (3-14) using the tngonometric dentity
cos(a + b) =cosacosh —sinasin b:

A(t) = Au[cos mgt cos(m singt) sy Eamlm singn) ] (3-16)

From immediate inspection we cian see that the main frequency components
are at wq, and the other spectral content aw o amed by the terms
cos(m sin gt) and sin(m sin g1).  They are periodic with period 2n/q; that
is, the argument of these terms repents itselt with that period. That fact
makes them prime candidates tor expansion i ouner series,  Consider
the cosine function

-

costm sin gy = Y agdm)cos ngt (3-17)

a=ir

We can use only cosine terms in the expanyion since the cosine is an even
function and the coctlicients of sine termn would necessarily vanish.  The
coefficients a,(m) are tound by multiplying both sides of Eq. (3-17) by
cos n'qt and averaging ovetr a penid I 11 you do so, you find the
following integral expression:

1 !
a,(m) . " " con n gt costm sin gt)
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This expression may be developed in a power series in m sin gt, which
becomes, upon integration, a power series in m. Fortunately, the labor
has already been done; consultation of a complete set of mathematical
tables [4] under * Bessel Functions” shows the coefficients of Eq. (3-17)
to be Bessel functions of integral order:

cos(m sin gt) = Jo(m) + 2 Y J,(m) cos 2kqt (3-18a)
k=1
and
sin(msin qt) = 2 Y Jy 4 (m)sin[(2k + 1)qt] (3-18b)
k=0

The functions J,(m) are Bessel functions of integral order of the first
kind. Although they are surely less familiar than trigonometric functions,
the student should not be put off by them. A graph of the first three is
shown in Fig. 3-2. Note Jo(0) = 1, and J,(0) = 0, n = 0. Also note that
Jo(m) deviates as m? from its value at m = 0 for small m, and the others
begin from zero as m". A qualitative look at Fig. 3-2 and these remarks
are all we require of the Bessel functions. The expressions (3-18) must
be put back into (3-16):

A() = Jo(m)cos wot + 3. J i, cos(wg + nglt(sgnn)  (3-19)

1.0 Jo(m)

Jy(m)
0.5—

Fig. 3-2 Bessel functions of the first kind, J.(m), versus m, for n =0, 1, 2.
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The notation (sgn n) means to multiply by (+1) when n >0 and by (= 1)
when 7 < 0. Again, Eq. (3-19) is most valuable to use in graphical form,
as in Fig. 3-3, which gives the frequency spectrum of the power, pro-
portional to A(1)®. The graph has been presented with Aw = constant,
because in our applications, the local field, which causes Aw, is a fixed
characteristic of the substance, whereas ¢ may often be changed within a
given sample, by changing the temperature, for example. (We shall
present one situation, however, in which it is ¢ that is fixed by the nature
of the substance and Aw that is changed by the experimenter.) The
thing to notice about Fig. 3-3 is that the power spectrum is mostly con-
tained within Aw of w,, and when m < 1, which means ¢ > Ao, the power
is mainly in the center frequency w,. The sidebands are still spaced by
the modulation frequency g but are small in amplitude. If you try to
change the frequency back and forth too rapidly, the major effect is not
to change it at all.

Although there is only a qualitative resemblance between the problem
of sinusoidal frequency modulation and our problem of motional narrow-
ing, the results of the preceding analysis are already suggestive.  If we
make an arbitrary connection between the spectrum of Fig. 3-3 and the
line width in a nuclear resonance, we can see the origins ot the broadening
that takes place as 7, increases and becomes on the order of 1/éw in
Fig. 3-1.  For all values of 1, such that dwt. < I, the ™ modulation index ™’
is less than 1; that is, wt, is roughly the same as the modulation index.

There is, of course, a vast difference between the case of sinusoidal
modulation and the random fluctuations of the local field in a liquid. To

—-4q q =50
1 I l M | i | l 1 "
-q m=3.0
1 l 1 1 1 | 1 .
~q q
I I m=1.0
—q m=0.5 q
L , . J
-2 Aw —Aw Aw 2 Aw

Fig. 3-3 Fourier components of the power spectrum of Ea. (3-19) for
m - 0.5,1.0, 3.0,5.0.
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sharpen the distinction, we make the following analysis. Let A,(t) be
the local field seen by a nucleus at some arbitrary time t. Form the
product A, (t)h,(t + 1) and average over all time for a particular nucleus.
That process defines f(1):

S(@) = <hh(t + 1)) (3-20)

where the brackets { ) indicate average over time t and f{t) is the auto-
correlation function of h;. 1t is independent of t since the sample is
assumed to be homogeneous and in thermal equilibrium; there is nothing
special about any particular time. Consider what we expect of f(1) as
T becomes large. If the sample is large, if the local field is produced by
many nuclei undergoing random motions, then we ought reasonably
to expect no relation between #,(r) and h,(t + 1). Since A, can be positive
or negative, and since, in fact, the temporal randomness of A, means
<h(t)y = 0, we expect

limf(z) =0 (3-21)

T+ w

to be reasonable behavior for f(r) at large t. Contrast that behavior
with the autocorrelation function of Eq. (3-12):

Cw(Dw(t + 1)) = {wy + Aw cos gt)[w, + Aw cos ¢(t + 1)]>
2 2( 9 anla
= wy” + Aw (27{ fo cos qt cos g(t + 1) dt)

cos gt
2

= wy? + Aw?

(3-22)

The lead‘ing term, w,?, is as expected, but the second term certainly does
not vanish. Therefore, it is clear that a simple modulation such as
Eq. (3-12) fails to satisfy one’s intuitive requirements for random
modulation.

The simplest form of f(1) that satisfies all the requirements is an
exponential:

(1) = ChD)?) exp — |1/, (3-23)

Equation (3-23) reintroduces the correlation time .. The average over
time (2)f the square of the local field, (4, (1)?), is the same as the average
of h,* over all the nuclei in the sample by a fundamental hypothesis of
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statistical mechanics [5]. We see that we are able to specify the local
field, and hence the random frequency modulation of each * nuclear
oscillator by that local field, less precisely than we did in the simple case
of sinusoidal modulation, but we do preserve some points of similarity.
These include the correspondence between (yh,_)2 and Aw?, and the simi-
larity between the parameter g of Eq. (3-22) and 1/, of Eq. (3-23).

At this point, our resort to plausibility arguments must come to an end,
because the subsequent development relies on theory that uses the density
matrix of quantum statistical mechanics and time dependent perturbation
theory. The full theory is nothing less than a derivation of the Bloch
equations from the basic principles of quantum statistical mechanics. Our
previous paragraphs have attempted to establish a climate of acceptance
in the student’s mind for the results. The central formula of the theory
is the Fourier transform of the correlation function f(t), which is j(w), the
spectral density function:

o =4[ ChOh(s+ e dr (3-24)

Equation (3-24) is one of a pair of integrals known as the Wiener-
Khintchine relations (see reference [5], p. 586). In the case of the par-
ticular form of f(t) given by Eq. (3-24),

h 2
)= £ 629

The spectral density function determines the effectiveness of the local field
in producing transitions between quantum mechanical spin states. The
relaxation rates 1/T, and 1/T, are determined by j(w). To write down the
final results, we must specify j(w) more completely. Since the local field
has the usual x, y, and z components, a more general j(w) may be written

jup@) =1 | f ha()hy(t + D)™ d (3-26)

where a, f = x, y, z. If the local field is truly random, then {h,(1)hs(t + 7)>
=0, for a #£f, and the only components of j,; are j, (®), j,,(w), and
J..{w). 1In terms of the spectral density function, the complete equation
for T;! that replaces Egs. (3-4) and (3-10) is

T3 ' =y7[)=(0) + jy(wo)] (3-27)
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The first term is the same as Eq. (3-4), which we obtained by the random
walk argument, and the second is the ““lifetime broadening” effect we
discussed prior to Eq. (3-10). Intermsof hand 7, from Eq. (3-25) we get

TC
T;'= }’2(<h22 >t + <y m) (3-28)

The assumption of spatial isotropy, made to obtain Eq. (3-10), is that
Ch2y = Ch2y = <h*y = hy® The result for T7'is

2y2h,%1,
2

Tt = P lia(00) + (@] = T (3-29)

We can now complete Fig. 3-1 by including the portion of the T, curve
for 7, > l/wy. The full curve is shown in Fig. 3-4. {\t 1. = ljwy, T
goes through a minimum, then increases, whereas T, gontmues to decrease.
Although these features are an obvious analytical consequence of

log T,,log T,
T,

1/6w

T,

. d log 7,
1/we loéw

Fig. 3-4 Log T,, log T versus log 7. for Egs. (3-28), (3-29).

Line Widths and Spin-Lattice Relaxation 71

Egs. (3-28) and (3-29), it is instructive to sce how they can be remembered
easily by examining one further property of j(w), Eq. (3-25):

‘L’cdu) ’”0 dx

[ i(w) dw = Y
J(e) Jo 1+ wit? Jo 1 4+x

1
i),

4
i=5  (3:30)

The area under j(w) versus w is a constant, independent of t.. Several
J(w) curves with this property are plotted in Fig. 3-5. When 1, 1s short
[curve (1) of Fig. 3-5], jlwy) =j0), and T, =T,. j(wy) is largest for
curve (2)—hence the maximum in the relaxation rate there, or the T
minimum of Fig. 3-4.  For long 1., j(w,) decreases again as the Larmor
frequency falls far out in the tail of j(w), accounting for the rise in T, for
longer ..

Nothing in Eq. (3-28) explains the constancy of T, when 7, is longer than
1/yh,. At this point, the theory breaks down, but the reason for it and
the result can be seen in Fig. 3-3. The spectrum for » » 1 covers only
the range Aw as the modulation index increases. The local field is
essentially static.  Under these conditions, the Bloch cquations are not
valid, the line shape of the resonance, "(«). is not Lorentzian. We shall
leave this case to the next chapter.

log j(w)
(3
(2)
ch
S Y S | 1 i . . Loy o
Wy
Fig. 3-5 (1) j(w) versus w, 7. less than w,  (2) 1 equal to wn th o

greater than wo.
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3-5. SOME APPLICATIONS

Qualitatively, the effect of rapid nuclear motion is to average out internal
fields, or so the previous parts of this chapter would lead us to believe.
In fact, we must be very careful to make a distinction between internal
fields that can be averaged out and those that cannot. Equation (3-1)
gives the expression for the field at a vector distance r from a point dipole

B BT
Hy= - 5+3=5r (3-1)

Consider, for example, the z component of the field produced at the center
of a unit sphere by a dipole on the surface. If the dipole points in the z

direction, then

H,= —p(1 —3cos? O)r?

where 0 is the polar angle in the conventional spherical coordinate labeling.
If the dipole is allowed to roam over the surface of the sphere, the average
field at the center is

1 2n n .
——f d¢ (1 —3cos?@)sinfdf=0

4n ¢=0 8=0

since {cos? 8> = 4 when averaged over the solid angle. The demonstra-
tion of the equivalent result for other components of H, and arbitrary
orientation of p is tedious, and, in fact, unnecessary, but the result still
holds.

Another type of Jocal field that can be reduced by rapid motion is the
inhomogeneity of the magnet. In this case, the inhomogeniety of H, is
all that counts. Suppose, as is likely to be the case in the typical electro-
magnet, the inhomogeneity has cylindrical symmetry, and suppose the
maximum deviation from the average H,is AH. If a given nucleus can be
forced to sample the range of fields over the sample volume rapidly
enough, the total effect of the local field will be reduced according to
Eq. (3-4). The nuclei may be caused to sample the magnet’s range of
fields by spinning the sample about an axis perpendicular to the field
direction. A typical geometry is shown in Fig. 3-6. To achieve narrow-
ing, @ must be so large that the modulation index, m = (y AH/w), is less
than one. If each spin samples essentially the same magnetic fields
during each revolution, the frequency modulation produced by the spin-
ning is periodic, although probably not sinusoidal. OQur original analysis
of frequency modulation is useful, though, and we see that the criterion
m <1 is sufficient to produce spinning sidebands which are farther away
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Fig. 3-6 Spherical sample in an inhomogeneous field. Sample is spun at
angular frequency w about an axis perpendicular to the page.

than y AH. For a typical field inhomogeneity of 10”* G, such as is
found in electromagnets made for chemistry applications, a spinning
frequency (w/2n) of a few cycles per second is sufficient. If turbulence
within the sample causes a given spin to sample the available fields in a
more random fashion, we require the width produced by the field inhomo-
geneity after narrowing to be comparable to, or less than, the natural
width. The requirement from Eq. (3-9) may be expressed

1 1 (yAH)?
T2<5~—;——m (3-31)

For typical hydrogenous liquids, where T, ~5 sec, and with a magnet
mhomogeneity of 107* G, w again must be a few cycles per second. That
spinning rate is easily achieved, and commercial apparatus is routinely
supplied with sample spinning attachments.




